定子槽漏感是定子无轭模块化(yokeless and segmented,YASA)轴向磁通永磁电机电感的主要分量,会降低电机的功率因数和最大输出转矩。该文提出定子槽内微小单元磁场能量法计算YASA电机的定子槽漏感,通过建立计及铁心饱和影响的二维等效...定子槽漏感是定子无轭模块化(yokeless and segmented,YASA)轴向磁通永磁电机电感的主要分量,会降低电机的功率因数和最大输出转矩。该文提出定子槽内微小单元磁场能量法计算YASA电机的定子槽漏感,通过建立计及铁心饱和影响的二维等效磁网络模型准确计算槽内微小单元储存的磁场能量,进而计算定子槽漏感。基于所提出的方法,进一步研究定子结构参数以及极槽配合对YASA电机定子槽漏感的影响规律。有限元仿真和实验结果表明,该文所提出的YASA电机定子槽漏感计算方法的可行性和准确性。展开更多
为确保含四绕组变压器的变电站保护整定可靠性,需研究精细化的四绕组变压器暂态模型及其短路计算等值电路。分析常规变压器等值电路的不足,推导了修正的耦合漏感等值电路,根据三相三柱式四绕组变压器的拓扑结构,运用对偶性原理建立了基...为确保含四绕组变压器的变电站保护整定可靠性,需研究精细化的四绕组变压器暂态模型及其短路计算等值电路。分析常规变压器等值电路的不足,推导了修正的耦合漏感等值电路,根据三相三柱式四绕组变压器的拓扑结构,运用对偶性原理建立了基于耦合漏感的四绕组变压器电路-磁路暂态模型;利用漏磁路的互阻抗远小于漏阻抗的特点,推导了用于短路计算的四绕组变压器简化等值电路以及零序阻抗。根据某地220 k V变电站实例进行仿真计算,结果表明所提出的四绕组变压器暂态模型及短路计算方法能够更准确地计算含四绕组变压器变电站的短路电流。展开更多
为在设计阶段对大功率中频变压器漏感值进行准确法估算,基于中频变压器一维等效模型,根据漏磁场分布特征,通过能量法进行了变压器漏感参数解析公式推导。在此基础上,根据理想漏磁场模型与实际的差异,修正了解析公式中绕组的电导率与漏...为在设计阶段对大功率中频变压器漏感值进行准确法估算,基于中频变压器一维等效模型,根据漏磁场分布特征,通过能量法进行了变压器漏感参数解析公式推导。在此基础上,根据理想漏磁场模型与实际的差异,修正了解析公式中绕组的电导率与漏磁场的计算高度。通过比较两台样机在50 Hz^10 k Hz频段下的漏感实测与计算结果,证实了对这2个参数同时进行校正,可使变压器漏感计算误差减小到5%以内,并进一步分析了仍然存在的误差产生的原因。通过样机1与样机2的漏感值对比,证明了绕组交叉换位技术可有效减小变压器漏感。展开更多
文摘定子槽漏感是定子无轭模块化(yokeless and segmented,YASA)轴向磁通永磁电机电感的主要分量,会降低电机的功率因数和最大输出转矩。该文提出定子槽内微小单元磁场能量法计算YASA电机的定子槽漏感,通过建立计及铁心饱和影响的二维等效磁网络模型准确计算槽内微小单元储存的磁场能量,进而计算定子槽漏感。基于所提出的方法,进一步研究定子结构参数以及极槽配合对YASA电机定子槽漏感的影响规律。有限元仿真和实验结果表明,该文所提出的YASA电机定子槽漏感计算方法的可行性和准确性。
文摘为确保含四绕组变压器的变电站保护整定可靠性,需研究精细化的四绕组变压器暂态模型及其短路计算等值电路。分析常规变压器等值电路的不足,推导了修正的耦合漏感等值电路,根据三相三柱式四绕组变压器的拓扑结构,运用对偶性原理建立了基于耦合漏感的四绕组变压器电路-磁路暂态模型;利用漏磁路的互阻抗远小于漏阻抗的特点,推导了用于短路计算的四绕组变压器简化等值电路以及零序阻抗。根据某地220 k V变电站实例进行仿真计算,结果表明所提出的四绕组变压器暂态模型及短路计算方法能够更准确地计算含四绕组变压器变电站的短路电流。
文摘为在设计阶段对大功率中频变压器漏感值进行准确法估算,基于中频变压器一维等效模型,根据漏磁场分布特征,通过能量法进行了变压器漏感参数解析公式推导。在此基础上,根据理想漏磁场模型与实际的差异,修正了解析公式中绕组的电导率与漏磁场的计算高度。通过比较两台样机在50 Hz^10 k Hz频段下的漏感实测与计算结果,证实了对这2个参数同时进行校正,可使变压器漏感计算误差减小到5%以内,并进一步分析了仍然存在的误差产生的原因。通过样机1与样机2的漏感值对比,证明了绕组交叉换位技术可有效减小变压器漏感。