期刊文献+
共找到3,941篇文章
< 1 2 198 >
每页显示 20 50 100
双目标优化与生成对抗网络结合的框架结构阻尼器布置方案智能设计方法 被引量:2
1
作者 潘毅 陈齐 +1 位作者 王腾 周祎 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期58-70,共13页
为实现框架结构的阻尼器智能化布置,结合减震设计原理和智能算法,采用双目标优化算法和生成对抗网络算法分别进行阻尼器竖向和水平智能布置研究,并将该方法应用到两个框架结构减震设计工程案例中。在框架结构减震设计中,采用双目标优化... 为实现框架结构的阻尼器智能化布置,结合减震设计原理和智能算法,采用双目标优化算法和生成对抗网络算法分别进行阻尼器竖向和水平智能布置研究,并将该方法应用到两个框架结构减震设计工程案例中。在框架结构减震设计中,采用双目标优化算法进行阻尼器竖向布置,并与逐层逼近法、工程师设计和非减震设计进行对比,结果表明,采用该优化算法得到的阻尼器竖向布置方案能有效降低层间位移角和楼层加速度,提高结构的抗震性能。在确定各楼层的阻尼器数量后,利用训练好的生成对抗网络生成模型,可快速、自动地选择和确定各楼层阻尼器的平面安装位置,生成的平面布置与工程师设计的平面布置在相似性差异度综合评价指标上小于临界值0.1,说明两者相似度较高,且有利于提高原结构的抗扭能力。将双目标优化算法与生成对抗网络相结合,不仅能满足框架结构的减震性能目标,而且可实现阻尼器布置方案的智能设计,提升减震工程设计效率。 展开更多
关键词 优化算法 生成对抗网络 框架结构 阻尼器布置 智能设计
下载PDF
基于门控卷积生成对抗网络的西汉漆箱纹饰图案数字化修复研究 被引量:1
2
作者 周强 王露 +3 位作者 冯金牛 王莹 朱建锋 罗宏杰 《陕西科技大学学报》 北大核心 2024年第1期153-160,共8页
中国历史上漆器以其精美的纹饰技法闻名于世,针对古代漆器表面破损严重、纹饰信息大面积缺失的彩绘漆箱修复难题,提出了一种门控卷积生成对抗网络(GC-GAN)的古代漆箱表面图案修复方法.该方法采用门控卷积结构改进生成对抗网络模型,以提... 中国历史上漆器以其精美的纹饰技法闻名于世,针对古代漆器表面破损严重、纹饰信息大面积缺失的彩绘漆箱修复难题,提出了一种门控卷积生成对抗网络(GC-GAN)的古代漆箱表面图案修复方法.该方法采用门控卷积结构改进生成对抗网络模型,以提升模型对于图像中有效像素的学习能力并解决不规则大面积图像区域的高分辨率修复问题.在此基础上,首先对漆箱图案中的畸变、破损和缺失部分进行掩膜处理,然后使用GC-GAN生成掩膜区域的图案.针对漆箱纹饰图案样本数量少的问题,借助迁移学习思想,将模型在CelebA、SVHN等多种公共数据集上学习到的知识迁移到漆箱纹饰上.最终实现了“西安凤栖原西汉家族墓地”M1墓室中出土的大型木胎彩绘漆箱表面纹饰的数字化虚拟修复. 展开更多
关键词 漆器 西汉漆箱纹饰图案 数字化修复 门控卷积 生成对抗网络
下载PDF
基于改进条件生成对抗网络的可控场景生成方法 被引量:1
3
作者 张帅 刘文霞 +3 位作者 万海洋 吕笑影 Nawaraj Kumar Mahato 鲁宇 《电力自动化设备》 EI CSCD 北大核心 2024年第6期9-17,共9页
可再生能源发电具有较强的随机性和波动性,为实现高效可靠的场景建模,提出一种基于改进条件生成对抗网络的可控场景生成方法。提出基于条件生成对抗网络的场景生成框架,结合Transformer的全局注意力机制以及常规卷积和深度可分离卷积的... 可再生能源发电具有较强的随机性和波动性,为实现高效可靠的场景建模,提出一种基于改进条件生成对抗网络的可控场景生成方法。提出基于条件生成对抗网络的场景生成框架,结合Transformer的全局注意力机制以及常规卷积和深度可分离卷积的局部泛化机制,设计适用于提取可再生能源发电不同维度特征的网络结构;利用条件生成对抗网络模型建立低维气象特征隐空间和高维可再生能源发电数据之间的映射关系,提出一种可控场景生成方法,并建立随机场景生成、场景约减、极端场景生成和连续日场景生成4种生成策略。基于实际光伏、风电数据和气象数据的仿真结果表明,所提模型与方法能够有效学习可再生能源发电的随机性、时序性、波动性及空间相关性,实现对不同策略下场景的可控生成。 展开更多
关键词 场景生成 条件生成对抗网络 特征提取 配电网 可控生成
下载PDF
基于渐进式生成对抗网络的农作物病虫害细粒度分类 被引量:1
4
作者 邓昀 冯琦尧 +1 位作者 牛照文 康燕萍 《中国农机化学报》 北大核心 2024年第3期156-162,218,F0002,共9页
随着深度学习应用的普及和飞速发展,基于深度学习的图像识别方法广泛应用于农作物病虫害领域,但大部分的神经网络重视识别准确率的提高,却忽略神经网络庞大的参数计算量。为解决这个问题,基于渐进式生成对抗网络判别器模型和卷积注意力... 随着深度学习应用的普及和飞速发展,基于深度学习的图像识别方法广泛应用于农作物病虫害领域,但大部分的神经网络重视识别准确率的提高,却忽略神经网络庞大的参数计算量。为解决这个问题,基于渐进式生成对抗网络判别器模型和卷积注意力模块,提出一种改进的渐进式生成对抗网络判别器CPDM网络模型对农作物病虫害进行识别。通过对渐进式生成对抗网络判别器网络结构的调整,采用均衡学习率、像素级特征向量归一化和卷积注意力模块增强CPDM网络模型的特征提取能力,提高对真实图片的识别准确率。试验在PlantVillage数据集上进行,将该模型与VGG16、VGG19和ResNet18进行比较,得到TOP-1准确率分别为99.06%、96.50%、96.65%、98.86%,分别提高2.56%、2.41%、0.2%,且参数量仅为8.2 M。试验证明提出的CPDM网络模型满足在保证分类准确率的基础上,有效控制神经网络参数计算量的目的。 展开更多
关键词 农作物病虫害 渐进式生成对抗网络 卷积注意力模块 细粒度分类
下载PDF
基于UNet3+生成对抗网络的视频异常检测 被引量:1
5
作者 陈景霞 林文涛 +1 位作者 龙旻翔 张鹏伟 《计算机工程与设计》 北大核心 2024年第3期777-784,共8页
为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别... 为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别对连续输入的视频帧生成预测,引入多种损失函数和光流模型学习其外观与运动信息,通过计算AUC进行性能评估。U3P^(2)方法以6.3 M参数量在Ped2数据集的AUC提升约0.6%,而UP^(3)方法在Avenue数据集的AUC提升约0.8%,验证其能够有效应对不同场景下的异常检测任务。 展开更多
关键词 生成对抗网络 视频异常检测 U型卷积网络 全尺度跳跃连接 密集跳跃连接 光流模型 多尺度特征提取
下载PDF
基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断 被引量:2
6
作者 古莹奎 石昌武 陈家芳 《噪声与振动控制》 CSCD 北大核心 2024年第1期111-118,共8页
针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉... 针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉姆角场图,按比例划分训练集与测试集,将训练集样本与随机向量输入到深度卷积生成对抗网络模型中,交替训练生成器与判别器,达到纳什平衡,生成与原始样本类似的生成样本,从而实现故障样本的增广。用原始样本与生成的增广样本训练卷积神经网络分类模型,完成行星齿轮箱的故障识别。实验结果表明,所提方法能够有效提升样本不均衡条件下的行星齿轮箱故障诊断精度,使之达到99.15%,且能使收敛速度更快。 展开更多
关键词 故障诊断 格拉姆角场 深度卷积生成对抗网络 卷积神经网络 行星齿轮箱
下载PDF
基于循环生成对抗网络的逆时偏移成像结果优化
7
作者 黄建平 刘博文 +6 位作者 黄韵博 孙加星 李亚林 雷刚林 段文胜 陈飞旭 侯中根 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期36-45,共10页
在常规逆时偏移方法基础上,通过引入循环生成对抗网络(CycleGAN)发展一种基于循环生成对抗网络的逆时偏移成像结果优化方法。首先构建包含两个生成器和两个判别器的CycleGAN。在对抗损失、循环一致性损失函数的基础上,添加身份损失函数... 在常规逆时偏移方法基础上,通过引入循环生成对抗网络(CycleGAN)发展一种基于循环生成对抗网络的逆时偏移成像结果优化方法。首先构建包含两个生成器和两个判别器的CycleGAN。在对抗损失、循环一致性损失函数的基础上,添加身份损失函数,以避免训练过度;然后,组建样本集来训练网络,使其学习常规逆时偏移成像结果和最小二乘逆时偏移成像结果之间的映射关系;最后,利用其他合成数据和实际资料测试网络效果。结果表明,提出的基于循环生成对抗网络的逆时偏移成像结果优化方法在获得高精度、高信噪比成像结果的同时有效地提高了计算效率。 展开更多
关键词 循环生成对抗网络 残差网络 逆Hessian 最小二乘逆时偏移
下载PDF
应用生成对抗网络的地震数据重建和去噪一体化方法
8
作者 张岩 张一鸣 +1 位作者 董宏丽 宋利伟 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期714-723,共10页
在实际采集过程中,受地形条件和人为因素的影响,地震数据不仅在空间上会出现采样不足或不规则的情况,而且会混入噪声,不利于后续地震数据的处理和解释。通常将重建与去噪分为两个阶段处理,这样往往会引入额外的误差。为此,文中提出了一... 在实际采集过程中,受地形条件和人为因素的影响,地震数据不仅在空间上会出现采样不足或不规则的情况,而且会混入噪声,不利于后续地震数据的处理和解释。通常将重建与去噪分为两个阶段处理,这样往往会引入额外的误差。为此,文中提出了一种基于条件韦氏生成对抗网络(cWGAN)的地震数据重建去噪一体化方法,该方法研究的重点是在缺失道和噪声的混合干扰下,准确提取地震数据的有效特征。首先,以U-Net模型为基本网络结构来构建生成器模型,分级提取地震数据同相轴特征;在判别器模型中引入条件约束,引导生成器优化梯度方向。其次,建立重建和去噪误差描述模型,该模型设计了一体化损失函数,可以兼顾重建与去噪两方面的处理任务。最后,经过合成数据和实际数据测试,证明文中所提的网络模型恢复的地震数据信噪比更高且具有较强鲁棒性。 展开更多
关键词 地震数据处理 重建与去噪一体化 深度学习 生成对抗网络 一体化损失函数
下载PDF
基于条件生成对抗网络的无线传感网络多节点失效修复研究
9
作者 王暾 赵晓丽 +1 位作者 何苑 郝梦岩 《传感技术学报》 CAS CSCD 北大核心 2024年第4期716-722,共7页
当前主流的传感节点失效修复主要通过纠删码完成,修复后节点具有更高的空间利用率,但无法有效提升网络寿命。为此,提出基于条件生成对抗网络的无线传感网络多节点数据重构方法,完成失效修复。感知无线传感网络节点,对失效节点展开裁决,... 当前主流的传感节点失效修复主要通过纠删码完成,修复后节点具有更高的空间利用率,但无法有效提升网络寿命。为此,提出基于条件生成对抗网络的无线传感网络多节点数据重构方法,完成失效修复。感知无线传感网络节点,对失效节点展开裁决,确定失效节点位置,并重构节点内数据;将获取的失效节点用于条件生成对抗网络(CGAN)框架中生成器与节点替换网络的训练,通过训练好的生成器,以失效节点为条件,生成未失效节点;为提升修复性能,使用粒子群算法寻优节点替换网络参数,完成节点重构数据置换,实现失效节点的有效修复。结果表明:利用所提方法进行修复时,能耗最高仅为17 J,剩余寿命最低可达到300 h,连通度最高可达到99.2%,具有较好的修复效果。 展开更多
关键词 无线传感网络 失效节点修复 条件生成对抗网络 节点失效判决 节点数据重构
下载PDF
融合时间和知识信息的生成对抗网络序列推荐算法
10
作者 李忠伟 周洁 +2 位作者 刘昕 吴金燠 李可一 《计算机工程》 CAS CSCD 北大核心 2024年第11期70-79,共10页
序列推荐作为一种常用的推荐系统技术,通过对用户的历史交互序列进行建模来预测下一个可能交互的项目。现有的序列推荐方法主要利用用户交互序列和上下文信息进行推荐,忽略了序列中交互项目之间的时间间隔信息,交互项目之间的组合依赖... 序列推荐作为一种常用的推荐系统技术,通过对用户的历史交互序列进行建模来预测下一个可能交互的项目。现有的序列推荐方法主要利用用户交互序列和上下文信息进行推荐,忽略了序列中交互项目之间的时间间隔信息,交互项目之间的组合依赖以及上下文信息中存在噪声的问题,导致推荐结果受限。针对以上问题,提出一种基于生成对抗网络的序列推荐模型TKWGAN,该模型包含一个生成器和一个判别器。生成器结合了用户历史交互序列和各项目之间的时间间隔信息对用户偏好进行建模并生成预测,判别器则引入了知识图谱信息对项目进行语义扩充,从而能更准确地对生成器的预测进行合理性判断。针对用户交互序列和知识图谱信息中可能存在噪声的问题,提出一种基于小波变换的多核卷积神经网络来构造判别器,以更全面、准确地捕获用户的潜在兴趣,提高推荐的准确性。在MovieLens-1M、Amazon Books和Yelp2018这3个公开数据集上的实验结果表明,与8个序列化推荐算法相比,提出的TKWGAN模型在命中率(HR@N)和归一化折损累计增益(NDCG@N)指标上均有显著提升。 展开更多
关键词 推荐算法 序列推荐 生成对抗网络 知识图谱 小波卷积网络
下载PDF
基于双重注意力机制生成对抗网络的偏振图像融合
11
作者 陈广秋 尹文卿 +2 位作者 温奇璋 张晨洁 段锦 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期140-150,共11页
针对单一强度图像缺少偏振信息,在恶劣天气条件下无法提供充足场景信息的问题,本文提出了一种基于双重注意力机制生成对抗网络用于强度图像和偏振度图像进行融合。算法网络由一个包含编码器、融合模块和解码器的生成器和一个鉴别器组成... 针对单一强度图像缺少偏振信息,在恶劣天气条件下无法提供充足场景信息的问题,本文提出了一种基于双重注意力机制生成对抗网络用于强度图像和偏振度图像进行融合。算法网络由一个包含编码器、融合模块和解码器的生成器和一个鉴别器组成。首先源图像输入到生成器的编码器中,经过一个卷积层和密集块进行特征提取,然后通过含有注意力机制的纹理增强融合模块中进行特征融合,最后通过解码器得到融合图像。鉴别器主要由两个卷积模块和两个注意力模块组成,在网络训练过程中,通过不断博弈,迭代优化生成器网络参数,使生成器输出既保留偏振度图像的稀疏特征又不损失强度图像信息的高质量融合图像。实验表明,该方法得到的融合图像在主观上纹理信息更丰富,更符合人眼的视觉感受,并且在客观评价指标中SD提升约18.5%,VIF提升约22.4%。 展开更多
关键词 图像融合 偏振图像 生成对抗网络 注意力机制
下载PDF
基于长短时记忆网络和生成对抗网络的VRB储能系统虚假数据注入攻击检测
12
作者 陆鹏 付华 卢万杰 《电网技术》 EI CSCD 北大核心 2024年第1期383-393,共11页
随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据... 随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据注入攻击导致的异常数据检测问题,提出一种基于长短时记忆网络和生成对抗网络的检测方法。首先,建立了VRB等效电路模型和虚假数据注入攻击模型;然后,通过训练长短时记忆网络和生成对抗网络组成的循环网络,将长短时记忆神经网络嵌入生成对抗网络框架作为生成器和鉴别器来分析电池时序数据,通过判别网络中的判别损失误差和生成网络中的重构残差得到异常损失进行综合判断;最后,以CEC-VRB-5kW型号电池为对象,并构造不同强度的虚假数据攻击进行实验,验证检测方法的准确性与可行性。结果表明,与经典循环神经网络、随机森林、自编码器、长短时记忆网络检测方法进行对比,所提方法具有较高的检测精度,在VRB储能系统荷电状态估计中能够有效辨识虚假数据攻击。 展开更多
关键词 长短时记忆网络 生成对抗网络 储能系统 SOC估计 虚假数据注入攻击
下载PDF
基于生成对抗网络的植物景观生成设计——以花境平面图生成为例
13
作者 冯璐 余辰雯 +1 位作者 孙雨婷 赵晶 《风景园林》 北大核心 2024年第9期59-68,共10页
【目的】植物景观设计需要科学性和技术性兼备。探索人工智能,特别是生成对抗网络(generative adversarial network,GAN)在植物景观设计中的应用,能够帮助设计师提高设计过程的效率。【方法】以花境平面图生成设计为例,建立了基于细致... 【目的】植物景观设计需要科学性和技术性兼备。探索人工智能,特别是生成对抗网络(generative adversarial network,GAN)在植物景观设计中的应用,能够帮助设计师提高设计过程的效率。【方法】以花境平面图生成设计为例,建立了基于细致筛选优化的植物平面数据集。数据集标注基于植物分类,考虑了植物的种类、搭配原则及空间布局规律。引入循环生成对抗网络(cycle generative adversarial network,CycleGAN)模型对数据集进行学习,实现花境平面设计的自动生成。【结果】CycleGAN模型在以花境为代表的植物景观设计中具有独特的优势,花境平面图生成模型能够准确识别条形场地边界,并在色彩再现方面表现出较高的精度和可识别性。生成平面图的空间布局中,色块大小、平面布局形态和位置展示了各种植物的空间分布特点,并能够复现部分潜在搭配组合,生成了符合美学和生态原则的设计方案。然而,模型在部分场地边框的准确识别和设计结果的多样性方面仍存在局限。【结论】证明了CycleGAN在植物景观设计领域的应用潜力,并为实践中的植物景观设计提供了创新和有效的解决方案。 展开更多
关键词 风景园林 植物景观设计 机器学习 神经网络 循环生成对抗网络 花境
下载PDF
基于UNet结构生成对抗网络的海底地震勘探数据混叠噪声压制方法
14
作者 童思友 刘岗 +3 位作者 徐秀刚 王忠成 王金刚 杨德宽 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期123-131,共9页
本文提出一种基于UNet结构生成对抗网络(Pix2PixGAN)的海底地震勘探数据混叠噪声压制方法,该神经网络主要在于构建了一个适用于混叠噪声压制的生成器和判别器,生成器是UNet结构,可以提取和融合数据的特征映射信息,而通过加入skip-connec... 本文提出一种基于UNet结构生成对抗网络(Pix2PixGAN)的海底地震勘探数据混叠噪声压制方法,该神经网络主要在于构建了一个适用于混叠噪声压制的生成器和判别器,生成器是UNet结构,可以提取和融合数据的特征映射信息,而通过加入skip-connection,可以保留更多的细节信息;判别器由两个卷积模块构成,通过PatchGAN输出多个固定大小的数据体,加入Dropout2d层,优化判别器的训练速度。通过制作的四千余个数据集对网络模型进行训练,将得到的训练参数加载到测试网络中,经过测试数据集的验证以及和常规的去噪方法相比,验证了本文采用的混叠噪声压制方法具有较高的压制精度和效率。 展开更多
关键词 生成对抗网络 海底地震勘探 地震数据 混叠 噪声压制
下载PDF
基于生成对抗网络的图像自增强去雾算法
15
作者 刘万军 程裕茜 曲海成 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1093-1106,共14页
针对现有去雾模型使用合成有雾图像数据集训练后容易出现过拟合的问题,提出了一种融合生成对抗网络的图像自增强去雾算法。在结合两个生成对抗网络的同时估计图像的深度信息。第一个GAN利用清晰图像学习图像加雾过程,将其生成的有雾图... 针对现有去雾模型使用合成有雾图像数据集训练后容易出现过拟合的问题,提出了一种融合生成对抗网络的图像自增强去雾算法。在结合两个生成对抗网络的同时估计图像的深度信息。第一个GAN利用清晰图像学习图像加雾过程,将其生成的有雾图像作为第二个GAN的输入,指导第二个GAN如何正确去雾。为了减少图像处理前后的差异,利用一致性损失函数来优化两个网络。在图像加雾部分添加场景深度估计模块,并对散射因子进行随机采样,实现图像自增强功能,更加真实地模拟现实世界中不同浓度的雾气。该算法无需使用合成有雾图像数据集的成对信息,进一步避免过拟合问题。实验结果表明:所提算法能够取得较好的去雾效果,在主观视觉质量和客观评价指标上均有良好表现,优于同类算法。 展开更多
关键词 图像处理 机器视觉 生成对抗网络 光学模型 图像去雾
下载PDF
基于双通道生成对抗网络的城市用电负荷缺失数据补全方法
16
作者 刘志坚 陶韵旭 +2 位作者 刘航 罗灵琳 李明 《电力系统自动化》 EI CSCD 北大核心 2024年第17期161-170,共10页
用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,... 用电负荷数据的完整性与有效性在负荷预测等应用中具有重要意义。传统的缺失数据补全方法缺乏对用电负荷和多种外部时空关联信息的挖掘,难以获得高精度的补全结果。文中提出了一种双通道生成对抗网络,对缺失的负荷数据进行补全。首先,根据负荷的周期性变化特征和时空关联性构建三阶负荷张量,并将影响负荷变化的多种外部因素构建为三阶辅助信息张量。然后,为满足两种张量的双输入需求,在生成对抗网络的输入层引入双通道机制,通过卷积与反卷积运算提取张量的特征;为提升网络对张量数据的训练效果和补全精度,将张量分解损失引入原始损失函数,并采用改进的混沌映射粒子群优化算法联合优化超参数和网络。最后,在真实负荷数据集上开展数据补全实验。结果表明,所提方法能够对随机缺失率不超过50%、连续缺失不超过3天的负荷数据进行准确补全。 展开更多
关键词 负荷数据缺失 负荷预测 三阶张量 生成对抗网络 分解损失 混沌映射粒子群优化算法 补全方法
下载PDF
基于改进信息最大化生成对抗网络的风光出力场景可控生成方法
17
作者 陈凡 陈刘明 +2 位作者 王曼 徐鸿琪 周小雨 《电网技术》 EI CSCD 北大核心 2024年第4期1477-1486,I0030,I0031-I0033,共14页
基于深度学习的场景生成方法能够自适应挖掘历史数据中高维非线性特征,在风光出力的不确定性建模中得到了广泛应用。然而,基于深度学习的场景生成方法多为黑盒模型,存在可解释性差、生成不可控等问题。为此,提出了一种基于改进信息最大... 基于深度学习的场景生成方法能够自适应挖掘历史数据中高维非线性特征,在风光出力的不确定性建模中得到了广泛应用。然而,基于深度学习的场景生成方法多为黑盒模型,存在可解释性差、生成不可控等问题。为此,提出了一种基于改进信息最大化生成对抗网络(information maximizing generative adversarial nets,Info GAN)的风光出力场景生成方法。该方法在目标函数中增加了基于互信息的正则化项,最大化控制编码与生成场景之间的互信息,无监督学习控制编码与生成场景统计特征的映射关系,并引入Gumbel-Softmax分布提高了生成场景的质量。结合风电场和光伏电站的真实数据进行了算例分析,算例结果表明,所提方法不仅能准确描述风光出力不确定性,而且具有可解释性,能够可控生成指定风光出力场景。 展开更多
关键词 场景生成 风光出力 可解释性 信息最大化生成对抗网络 Gumbel-Softmax分布 可控生成
下载PDF
基于生成对抗网络的追尾事故数据填补方法研究
18
作者 周备 张莹 +2 位作者 张生瑞 周千喜 汪琴 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第1期132-137,198,共7页
深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追... 深入分析交通事故数据可以为规避事故发生、降低事故严重程度提供重要理论依据,然而,在事故数据采集、传输、存储过程中往往会产生数据缺失,导致统计分析结果的准确性下降、模型的误判风险上升。本文以芝加哥2016—2021年的101452条追尾事故数据为研究对象,将原始数据按照7∶3随机分为训练集和测试集。在训练集数据上,利用生成式插补网络(Generative Adversarial Imputation Network,GAIN)实现对缺失数据的填补。为对比不同数据填补方法的效果,同时选择多重插补(Multiple Imputation by Chained Equations,MICE)算法、期望最大化(Expectation Maximization,EM)填充算法、缺失森林(MissForest)算法和K最近邻(K-Nearest Neighbor,KNN)算法对同一数据集进行数据填补,并基于填补前后变量方差变化比较不同填补算法对数据变异性的影响。在完成数据填补的基础上,构建LightGBM三分类事故严重程度影响因素分析模型。使用原始训练集数据,以及填补后的训练集数据分别训练模型,并使用未经填补的测试集数据检验模型预测效果。结果表明,经缺失值填补后,模型性能得到一定改善,使用GAIN填补数据集训练的模型,相较于原始数据训练的模型,准确率提高了6.84%,F1提高了4.61%,AUC(Area Under the Curve)提高了10.09%,且改善效果优于其他4种填补方法。 展开更多
关键词 城市交通 数据填补 生成对抗网络 追尾事故 LightGBM模型
下载PDF
改进生成对抗网络水下图像增强方法
19
作者 陈海秀 陆康 +2 位作者 何珊珊 房威志 黄仔洁 《中国测试》 CAS 北大核心 2024年第1期54-61,共8页
针对水下图像颜色失真和细节模糊的问题,提出一种基于改进生成对抗网络的水下图像增强方法。该方法将生成对抗网络作为基础架构,生成网络采用编码解码结构,并引入RGB颜色空间块、HSV颜色空间块和注意力机制;RGB块可以更好地去噪和去除偏... 针对水下图像颜色失真和细节模糊的问题,提出一种基于改进生成对抗网络的水下图像增强方法。该方法将生成对抗网络作为基础架构,生成网络采用编码解码结构,并引入RGB颜色空间块、HSV颜色空间块和注意力机制;RGB块可以更好地去噪和去除偏色,HSV颜色空间可以调整水下图像的亮度、颜色和饱和度,最后生成网络通过分配权重来生成图像。判别网络采用类似马尔科夫判别器的结构。此外,通过构建全局相似和内容感知多项损失函数,使生成的图像在色彩、内容、结构上和参考图像保持一致。实验表明,所提出的方法在主观比较和客观指标上都有很好的表现。其中结构相似度、峰值信噪比、水下彩色质量评估和水下图像质量度量在合成水下图像测试集的平均值分别为0.7746、19.2758、0.4889和3.3124。在真实水下图像测试集的平均值分别为0.9000、24.2636、0.4499和3.1619。在主观评价和客观评价指标上,综合比较,该文算法实验结果均优于对比算法。 展开更多
关键词 水下图像 生成对抗网络 颜色空间 注意力机制
下载PDF
基于自适应生成对抗网络的智能电网状态重构的虚假数据攻击检测
20
作者 王新宇 王相杰 罗小元 《电力信息与通信技术》 2024年第9期1-7,共7页
考虑到电力系统与能源互联网的深度耦合,虚假数据注入攻击对电力系统的威胁不断提升。文章针对虚假数据注入攻击(false data injection attack,FDIA)设计自适应生成对抗网络(adaptive generative adversarial networks,AGAN)状态重构的... 考虑到电力系统与能源互联网的深度耦合,虚假数据注入攻击对电力系统的威胁不断提升。文章针对虚假数据注入攻击(false data injection attack,FDIA)设计自适应生成对抗网络(adaptive generative adversarial networks,AGAN)状态重构的虚假数据注入攻击检测方法。该方法在生成对抗网络(generative adversarial networks,GAN)基础上融入卷积神经网络(convolutional neural network,CNN)以及自适应约束下的自注意力机制(self-attention,SA),实现节点间全局参考性,从而实现状态的有效重构和异常状态的准确预测;根据AGAN的异常数据预测结果设计结合网络判别值的检测逻辑。最后,在IEEE14节点的电力系统上验证所提方法的有效性,且对比GAN、CNN,AGAN重构的平均绝对百分比误差为0.0001%,检测准确率可达到98%。 展开更多
关键词 生成对抗网络 自注意力机制 自适应约束 电力系统 虚假数据注入攻击
下载PDF
上一页 1 2 198 下一页 到第
使用帮助 返回顶部