氧化还原液流电池(Redox flow batteries,RFBs)广泛应用于大规模储能领域。但因RFBs存在导电性差、稳定性弱等问题而使其应用受到了限制。设计并制备了基于石墨的负极浆料用于氧化还原液流电池,对石墨浆料的制备方法进行了筛选,并考察...氧化还原液流电池(Redox flow batteries,RFBs)广泛应用于大规模储能领域。但因RFBs存在导电性差、稳定性弱等问题而使其应用受到了限制。设计并制备了基于石墨的负极浆料用于氧化还原液流电池,对石墨浆料的制备方法进行了筛选,并考察了导电剂科琴黑(KB)在浆料中的质量分数对浆料性能的影响;对优化条件下制备的浆料的电化学性能进行了研究。结果表明,使用球磨法,添加KB的质量分数为1.4%~1.6%时制备的石墨浆料具有较好的性能,在电流密度为74.4 m A/g时,石墨的充电比容量可达294 m A·h/g。展开更多
Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious ...Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.展开更多
Printing is a method of additive manufacturing that can reduce material costs and environmental contamination during the fabrication process.Ag ink is commonly used in printed electronics,such as interconnects,inducto...Printing is a method of additive manufacturing that can reduce material costs and environmental contamination during the fabrication process.Ag ink is commonly used in printed electronics,such as interconnects,inductors,and antennas.However,the high cost of noble Ag restricts its massive applications.To reduce the cost of the state-of-the-art Ag ink and realize large-scale manufacturing,we develop a molecule-bridged graphene/Ag(MB-G/A)composite to produce highly conductive and cost-effective paperbased electronics.Graphene can be used to substitute part of Ag nanoparticles to reduce costs,form a conducive percolation network,and retain a reasonable level of conductivity.We adopt cysteamine as a molecular linker,because it anchors on the surface of graphene via the diazonium reaction.Additionally,the thiol functional group on the other end of cysteamine can bond to a Ag atom,forming a molecular bridge between graphene and Ag and promoting electron transport between Ag and graphene.As a result,the maximum conductivity of MB-G/A inks can reach 2.0×10^(5)S m^(−1),enabling their successful application in various printable electronics.In addition,the optimum MB-G/A ink costs less than half as much as pure Ag inks,showing the great potential of MB-G/A ink in commercial electronic devices.展开更多
文摘氧化还原液流电池(Redox flow batteries,RFBs)广泛应用于大规模储能领域。但因RFBs存在导电性差、稳定性弱等问题而使其应用受到了限制。设计并制备了基于石墨的负极浆料用于氧化还原液流电池,对石墨浆料的制备方法进行了筛选,并考察了导电剂科琴黑(KB)在浆料中的质量分数对浆料性能的影响;对优化条件下制备的浆料的电化学性能进行了研究。结果表明,使用球磨法,添加KB的质量分数为1.4%~1.6%时制备的石墨浆料具有较好的性能,在电流密度为74.4 m A/g时,石墨的充电比容量可达294 m A·h/g。
基金Project(51102035)supported by the National Natural Science Foundation of China
文摘Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.
基金financially supported by Hong Kong Scholars Program(XJ2019025)The Hong Kong Polytechnic University(CD42)Shenzhen Science and Technology Innovation Commission(JCYJ20180507183424383)。
文摘Printing is a method of additive manufacturing that can reduce material costs and environmental contamination during the fabrication process.Ag ink is commonly used in printed electronics,such as interconnects,inductors,and antennas.However,the high cost of noble Ag restricts its massive applications.To reduce the cost of the state-of-the-art Ag ink and realize large-scale manufacturing,we develop a molecule-bridged graphene/Ag(MB-G/A)composite to produce highly conductive and cost-effective paperbased electronics.Graphene can be used to substitute part of Ag nanoparticles to reduce costs,form a conducive percolation network,and retain a reasonable level of conductivity.We adopt cysteamine as a molecular linker,because it anchors on the surface of graphene via the diazonium reaction.Additionally,the thiol functional group on the other end of cysteamine can bond to a Ag atom,forming a molecular bridge between graphene and Ag and promoting electron transport between Ag and graphene.As a result,the maximum conductivity of MB-G/A inks can reach 2.0×10^(5)S m^(−1),enabling their successful application in various printable electronics.In addition,the optimum MB-G/A ink costs less than half as much as pure Ag inks,showing the great potential of MB-G/A ink in commercial electronic devices.