为了研究纤维种类、粘贴长度和宽度,以及基底类型(标准砖和砌体)对FRP加固砌体结构的界面粘结性能的影响,本文基于课题组已开展的试验研究,对FRP–砌体界面粘结性能进行非线性有限元模拟。采用ABAQUS软件建立FRP加固砌体结构的三维精细...为了研究纤维种类、粘贴长度和宽度,以及基底类型(标准砖和砌体)对FRP加固砌体结构的界面粘结性能的影响,本文基于课题组已开展的试验研究,对FRP–砌体界面粘结性能进行非线性有限元模拟。采用ABAQUS软件建立FRP加固砌体结构的三维精细化模型,其中粘结界面层采用零厚度形式,基于试验采集的极限承载力和FRP应变值,采用双线性本构曲线定义粘结层力学行为,对粘结界面层本构关系进行参数分析,对界面初始刚度、最大切应力和极限滑移值给出参考计算式与参考取值。模拟结果与试验结果对比可知,本文所建立的模型能够合理预测加固试件的极限承载力和荷载-位移曲线,为FRP-加固砌体粘结性数值研究提供可行性参考价值。In order to investigate the effects of fiber types, adhesive length and width, as well as substrate types (standard bricks and masonry) on the interface bonding performance of FRP reinforced masonry structures, this paper conducts nonlinear finite element analysis on the interface bonding performance of FRP masonry based on experimental research conducted by the research group. A three-dimensional refined model of an FRP-reinforced masonry structure was established using ABAQUS software, in which the bonding interface layer had zero thickness. Based on the ultimate bearing capacity and FRP strain values collected from experiments, the mechanical behavior of the bonding layer was defined using bilinear constitutive curves. Parameter analysis was conducted on the constitutive relationship of the bonding interface layer, and reference calculation formulas and values were provided for the initial stiffness, maximum shear stress, and ultimate slip value of the interface. The comparison between simulation results and experimental results shows that the model established in this paper can reasonably predict the ultimate bearing capacity and load displacement curve of reinforced specimens, providing a feasible reference value for numerical research on the bonding properties of FRP reinforced masonry.展开更多
纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应...纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应变,研究大直径喷砂GFRP锚杆在框架梁锚固条件下的受力破坏机制。研究表明,本试验大直径25 mm GFRP锚杆在拉拔力、平均黏结强度方面均达到相同直径螺纹钢筋锚杆的设计指标,最合理的框架梁厚度为30~40 cm;瞬时荷载循环对GFRP锚杆界面黏结状态无明显影响;持续荷载作用下杆体界面的黏结状态会发生蜕化,随时间延续蜕化向深部扩展,荷载越大扩展深度越大,蜕化速度越快;光纤光栅监测技术是发现和观察锚杆界面黏结状态蜕化过程的有效手段。展开更多
文摘为了研究纤维种类、粘贴长度和宽度,以及基底类型(标准砖和砌体)对FRP加固砌体结构的界面粘结性能的影响,本文基于课题组已开展的试验研究,对FRP–砌体界面粘结性能进行非线性有限元模拟。采用ABAQUS软件建立FRP加固砌体结构的三维精细化模型,其中粘结界面层采用零厚度形式,基于试验采集的极限承载力和FRP应变值,采用双线性本构曲线定义粘结层力学行为,对粘结界面层本构关系进行参数分析,对界面初始刚度、最大切应力和极限滑移值给出参考计算式与参考取值。模拟结果与试验结果对比可知,本文所建立的模型能够合理预测加固试件的极限承载力和荷载-位移曲线,为FRP-加固砌体粘结性数值研究提供可行性参考价值。In order to investigate the effects of fiber types, adhesive length and width, as well as substrate types (standard bricks and masonry) on the interface bonding performance of FRP reinforced masonry structures, this paper conducts nonlinear finite element analysis on the interface bonding performance of FRP masonry based on experimental research conducted by the research group. A three-dimensional refined model of an FRP-reinforced masonry structure was established using ABAQUS software, in which the bonding interface layer had zero thickness. Based on the ultimate bearing capacity and FRP strain values collected from experiments, the mechanical behavior of the bonding layer was defined using bilinear constitutive curves. Parameter analysis was conducted on the constitutive relationship of the bonding interface layer, and reference calculation formulas and values were provided for the initial stiffness, maximum shear stress, and ultimate slip value of the interface. The comparison between simulation results and experimental results shows that the model established in this paper can reasonably predict the ultimate bearing capacity and load displacement curve of reinforced specimens, providing a feasible reference value for numerical research on the bonding properties of FRP reinforced masonry.
文摘纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应变,研究大直径喷砂GFRP锚杆在框架梁锚固条件下的受力破坏机制。研究表明,本试验大直径25 mm GFRP锚杆在拉拔力、平均黏结强度方面均达到相同直径螺纹钢筋锚杆的设计指标,最合理的框架梁厚度为30~40 cm;瞬时荷载循环对GFRP锚杆界面黏结状态无明显影响;持续荷载作用下杆体界面的黏结状态会发生蜕化,随时间延续蜕化向深部扩展,荷载越大扩展深度越大,蜕化速度越快;光纤光栅监测技术是发现和观察锚杆界面黏结状态蜕化过程的有效手段。