引入幂级数J-Armendariz环的概念,进一步扩展幂级数Armendariz环的研究。证明了:(1)设T=(R 0 M S)是一个形式三角矩阵环,则T是幂级数J-Armendariz环当且仅当R和S都是是幂级数J-Armendariz环;(2)设{R_αα∈Λ}是一族环,则直积∏α∈ΛR...引入幂级数J-Armendariz环的概念,进一步扩展幂级数Armendariz环的研究。证明了:(1)设T=(R 0 M S)是一个形式三角矩阵环,则T是幂级数J-Armendariz环当且仅当R和S都是是幂级数J-Armendariz环;(2)设{R_αα∈Λ}是一族环,则直积∏α∈ΛR_α是幂级数J-Armendariz环当且仅当每一个环R_α都是幂级数J-Armendariz环;(3)如果环R是幂级数J-Armendariz环,满足J(R)[x]=J(R[x]),则R[x]是幂级数J-Armendariz环。展开更多
高等数学里给函数项级数sum from m=1 to ∞a_n的和的定义: 若级数sum from m=1 to ∞a_n的部分和数列S_n极限存在,即 则称级数收敛,S称为级数sum from m=1 to ∞a_n的和。 定义本身已给出了收敛级数求和的方法。但求出级数的和,却是一...高等数学里给函数项级数sum from m=1 to ∞a_n的和的定义: 若级数sum from m=1 to ∞a_n的部分和数列S_n极限存在,即 则称级数收敛,S称为级数sum from m=1 to ∞a_n的和。 定义本身已给出了收敛级数求和的方法。但求出级数的和,却是一件比较困难的事情。为了帮助同学们掌握一些最基本的方法和技巧,我把级数sum from m=1 to ∞a_n的求和问题,分成以下几种情况。展开更多
文摘引入幂级数J-Armendariz环的概念,进一步扩展幂级数Armendariz环的研究。证明了:(1)设T=(R 0 M S)是一个形式三角矩阵环,则T是幂级数J-Armendariz环当且仅当R和S都是是幂级数J-Armendariz环;(2)设{R_αα∈Λ}是一族环,则直积∏α∈ΛR_α是幂级数J-Armendariz环当且仅当每一个环R_α都是幂级数J-Armendariz环;(3)如果环R是幂级数J-Armendariz环,满足J(R)[x]=J(R[x]),则R[x]是幂级数J-Armendariz环。
文摘高等数学里给函数项级数sum from m=1 to ∞a_n的和的定义: 若级数sum from m=1 to ∞a_n的部分和数列S_n极限存在,即 则称级数收敛,S称为级数sum from m=1 to ∞a_n的和。 定义本身已给出了收敛级数求和的方法。但求出级数的和,却是一件比较困难的事情。为了帮助同学们掌握一些最基本的方法和技巧,我把级数sum from m=1 to ∞a_n的求和问题,分成以下几种情况。