Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal c...Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.展开更多
In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming...In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming that travelers only focus on their past travel experience,a day-to-day traffic assignment model is established based on reinforcement learning and bounded rationality.In the proposed model,the Bush-Mosteller model,a reinforcement learning model,is modified to calculate path choice probability according to bounded rationality.The modified model updates the path choice probability only if the gap between expected travel time and perceived travel time is beyond the cognitive threshold.Numerical experiments validate the effectiveness of the model and show that traffic flows can converge to the equilibrium in any case of cognitive thresholds and penetration rates of battery electric vehicles.The cognitive threshold has a positive influence on the variation of traffic flows while it has a negative influence on the differences between traffic flows.The adaptation of battery electric vehicles leads to the poor performance of the traffic system.展开更多
As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some ser...As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.展开更多
文摘Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.
基金The National Natural Science Foundation of China(No.51478110)Postgraduate Research & Practice Innovation Program of Jiangsu Province(No.KYCX18_0139)
文摘In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming that travelers only focus on their past travel experience,a day-to-day traffic assignment model is established based on reinforcement learning and bounded rationality.In the proposed model,the Bush-Mosteller model,a reinforcement learning model,is modified to calculate path choice probability according to bounded rationality.The modified model updates the path choice probability only if the gap between expected travel time and perceived travel time is beyond the cognitive threshold.Numerical experiments validate the effectiveness of the model and show that traffic flows can converge to the equilibrium in any case of cognitive thresholds and penetration rates of battery electric vehicles.The cognitive threshold has a positive influence on the variation of traffic flows while it has a negative influence on the differences between traffic flows.The adaptation of battery electric vehicles leads to the poor performance of the traffic system.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology(Grant No.2013BAG14B01)the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2012EEL08)China Postdoctoral Science Foundation Funded Project(Grant No.2013M530608)
文摘As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.