In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and app...In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and applied to the structural design of a microwave heater. The structural sizes of the incentive cavities are determined based on the waveguide transmission line theory. Using IE3D software, electromagnetic simulations are respectively carried out in four different situations, including the distances between the magnetron probes (antennas) and a short-circuit board, different horn electric lengths and aperture sizes, different dielectric properties of the asphalt mixture, and the distances between the asphalt surface and the mouth cavity. The results show that, when the distance between the magnetron probe and the short-circuit board is 32.5 ram, it is the best installation site; reduction of aerial length is the main factor in improving the heating uniformity. When the aggregate is limestone, the best heating effect can be produced. Maximum radiation efficiency can be realized by adjusting the space between the heater radiation port and the asphalt pavement. The experimental results of asphalt mixture heating in four different situations have a substantial agreement with the simulation results, which confirms that the developed microwave heater can achieve better impedance matching, thus improving the quality and efficiency of heating regeneration.展开更多
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis...Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.展开更多
In this study,based on the established heat transfer and mechanical stress models,thermal stress distribution of glazing unit filled with paraffin was studied for various temperature differences between indoor and out...In this study,based on the established heat transfer and mechanical stress models,thermal stress distribution of glazing unit filled with paraffin was studied for various temperature differences between indoor and outdoor conditions.The strain produced on the surface of glazing unit filled with paraffin varies greatly in the outdoor temperature range of-30℃-40 ℃.Furthermore,phase change material(PCM) layer between the glass panes significantly affects the strain values at different temperatures,which can respectively reach up to about 250×10^(-6) and down to-300×10^(-6) for tensile and compressive strains once the paraffin is in liquid state.Additionally,impacts of boundary conditions on the strain values are more pronounced within the distance of 0.01 m from the edges of the glazing window.The presented model and outcomes can be used as a guide to simulate thermal stress in glazing units filled with paraffin.展开更多
The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite ...The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.展开更多
Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typica...Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.展开更多
A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of...A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of hot surface is mainly governed by cooling structure and heat-transfer conditions. For hot surface centricity, maximum surface temperature promotions are 30 ℃and 15 ℃ with thickness increments of copper plates of 5 mm and nickel layers of 1 ram, respectively. The surface temperature without nickel layers is depressed by 10 ℃ when the depth increment of water slots is 2 mm and that with nickel layers adjacent to and away from mold outlet is depressed by 7℃ and 5 ℃, respectively. The specific trend of temperature distribution of transverse sections of copper plates is nearly free of cooling structure, but temperature is changed and its law is similar to the corresponding surface temperature.展开更多
We study the centrality dependence of the mid-rapidity (|y| 〈 0.5) yields and transverse momentum distributions of K* (892)° and φ(1020) resonances produced in Pb + Pb collisions at SNN= 2.76 TeV. The...We study the centrality dependence of the mid-rapidity (|y| 〈 0.5) yields and transverse momentum distributions of K* (892)° and φ(1020) resonances produced in Pb + Pb collisions at SNN= 2.76 TeV. The mid- rapidity density (dN/dy) and the shape of the transverse momentum spectra are well reproduced by an earlier proposed Unified Statistical Thermal Freeze-out Model (USTFM), which incorporates the effects of both longitudinal as well as transverse hydrodynamic flow. The freeze-out properties in terms of kinetic freeze-out temperature and transverse flow velocity parameter are extracted from the model fits to the transverse momentum data provided by the ALICE experiment at the LHC. The kinetic freeze-out temperature is found to increase with decreasing event centrality while the transverse flow velocity parameter shows a mild decrease on moving towards peripheral collisions. Moreover the centrality dependence of the mid-rapidity system size at freeze-out has also been studied in terms of transverse radius parameter.展开更多
基金The Sci-Tech Achievements Transformation Program of Colleges and Universities in Jiangsu Province(No.JH09-13)the Research Fund of Nanjing Institute of Technology(No.YKJ201005)
文摘In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and applied to the structural design of a microwave heater. The structural sizes of the incentive cavities are determined based on the waveguide transmission line theory. Using IE3D software, electromagnetic simulations are respectively carried out in four different situations, including the distances between the magnetron probes (antennas) and a short-circuit board, different horn electric lengths and aperture sizes, different dielectric properties of the asphalt mixture, and the distances between the asphalt surface and the mouth cavity. The results show that, when the distance between the magnetron probe and the short-circuit board is 32.5 ram, it is the best installation site; reduction of aerial length is the main factor in improving the heating uniformity. When the aggregate is limestone, the best heating effect can be produced. Maximum radiation efficiency can be realized by adjusting the space between the heater radiation port and the asphalt pavement. The experimental results of asphalt mixture heating in four different situations have a substantial agreement with the simulation results, which confirms that the developed microwave heater can achieve better impedance matching, thus improving the quality and efficiency of heating regeneration.
基金Project (50925521) supported by the National Natural Science Fund for Distinguished Young Scholars of China
文摘Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.
基金Project(52078110) supported by the National Natural Science Foundation of ChinaProject(2018KYQD15) supported by Beibu Gulf Universityt,China。
文摘In this study,based on the established heat transfer and mechanical stress models,thermal stress distribution of glazing unit filled with paraffin was studied for various temperature differences between indoor and outdoor conditions.The strain produced on the surface of glazing unit filled with paraffin varies greatly in the outdoor temperature range of-30℃-40 ℃.Furthermore,phase change material(PCM) layer between the glass panes significantly affects the strain values at different temperatures,which can respectively reach up to about 250×10^(-6) and down to-300×10^(-6) for tensile and compressive strains once the paraffin is in liquid state.Additionally,impacts of boundary conditions on the strain values are more pronounced within the distance of 0.01 m from the edges of the glazing window.The presented model and outcomes can be used as a guide to simulate thermal stress in glazing units filled with paraffin.
文摘The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.
基金Project(50706059) supported by the National Natural Science Foundation of ChinaProject(HZ2009-KF05) supported by Open Fund of State Key Laboratory of Fire Science of University of Science and Technology in ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.
基金Project(51004031) supported by the National Natural Science Foundation of ChinaProject(50925415) supported by the National Outstanding Young Scientist Foundation of China+1 种基金Project(20100042120012) supported by the Special Research Fund for Doctoral Programs of Ministry of Education of ChinaProject(N090402022) supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of hot surface is mainly governed by cooling structure and heat-transfer conditions. For hot surface centricity, maximum surface temperature promotions are 30 ℃and 15 ℃ with thickness increments of copper plates of 5 mm and nickel layers of 1 ram, respectively. The surface temperature without nickel layers is depressed by 10 ℃ when the depth increment of water slots is 2 mm and that with nickel layers adjacent to and away from mold outlet is depressed by 7℃ and 5 ℃, respectively. The specific trend of temperature distribution of transverse sections of copper plates is nearly free of cooling structure, but temperature is changed and its law is similar to the corresponding surface temperature.
基金Supported by Council of Scientific and Industrial Research,New Delhi for This Work
文摘We study the centrality dependence of the mid-rapidity (|y| 〈 0.5) yields and transverse momentum distributions of K* (892)° and φ(1020) resonances produced in Pb + Pb collisions at SNN= 2.76 TeV. The mid- rapidity density (dN/dy) and the shape of the transverse momentum spectra are well reproduced by an earlier proposed Unified Statistical Thermal Freeze-out Model (USTFM), which incorporates the effects of both longitudinal as well as transverse hydrodynamic flow. The freeze-out properties in terms of kinetic freeze-out temperature and transverse flow velocity parameter are extracted from the model fits to the transverse momentum data provided by the ALICE experiment at the LHC. The kinetic freeze-out temperature is found to increase with decreasing event centrality while the transverse flow velocity parameter shows a mild decrease on moving towards peripheral collisions. Moreover the centrality dependence of the mid-rapidity system size at freeze-out has also been studied in terms of transverse radius parameter.