A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven sym...A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.展开更多
In this paper, a self-mode-locked Nd:YVO_4 picosecond vortex laser is demonstrated, which can operate on the different Laguerre-Gaussian(LG) modes at 1 064 nm. A π/2 mode converter is utilized to realize the picoseco...In this paper, a self-mode-locked Nd:YVO_4 picosecond vortex laser is demonstrated, which can operate on the different Laguerre-Gaussian(LG) modes at 1 064 nm. A π/2 mode converter is utilized to realize the picosecond vortex laser with LG mode transformed from the high-order Hermite-Gaussian(HG) mode. For the proposed laser, the mode-locked pulse repetition rate is 1.81 GHz. The average output powers of LG_(12) mode and LG_(02) mode are 1.241 W and 1.27 W, respectively, and their slope efficiencies are 23.2% and 24%, respectively.展开更多
文摘A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.
基金supported by the National Natural Science Foundation of China(No.61108021)the Fundamental Research Funds for the Central Universities(Nos.2013JBM091 and S16JB00010)
文摘In this paper, a self-mode-locked Nd:YVO_4 picosecond vortex laser is demonstrated, which can operate on the different Laguerre-Gaussian(LG) modes at 1 064 nm. A π/2 mode converter is utilized to realize the picosecond vortex laser with LG mode transformed from the high-order Hermite-Gaussian(HG) mode. For the proposed laser, the mode-locked pulse repetition rate is 1.81 GHz. The average output powers of LG_(12) mode and LG_(02) mode are 1.241 W and 1.27 W, respectively, and their slope efficiencies are 23.2% and 24%, respectively.