[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretic...[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.展开更多
In this study, maize plant seedlings were grown in soilless cultures, with and without ^-B radiation at a close of 5.4 kJt(m2-d). Three clays later, it was found that the treatment of UV-B radiation significantly re...In this study, maize plant seedlings were grown in soilless cultures, with and without ^-B radiation at a close of 5.4 kJt(m2-d). Three clays later, it was found that the treatment of UV-B radiation significantly reduced such characteristics as biomass, plant height, leaf area, and so on. Also, the photosynthesis of the maize was inhabited, the anti-oxid activity decreased, and the MDA concentration increased with the UV-B radiation exposure. The maize presented visible hybrid vigor under the control condition, while the hybrid vigor under UV-B radiation barely emerged in biomass, plant height, leaf area, and physiological metabolic index.展开更多
To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hyb...To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.展开更多
基金Supported by Director Fund for the Year 2008 Project(0806230SZO)Training Projects of Light of Western in Chinese Academy of Sciences(0906040XBO)Chinese Academy of science and Technology Project in Support of Gansu(0806300YDO)~~
文摘[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.
基金Supported by the Special Fund for the Industrial Technology System Construction of Modern Agriculture(CARS-11-B-11)Standardization Cultivation Technology Research and Development in Sweet Potato(2014CXZ05-3)~~
文摘In this study, maize plant seedlings were grown in soilless cultures, with and without ^-B radiation at a close of 5.4 kJt(m2-d). Three clays later, it was found that the treatment of UV-B radiation significantly reduced such characteristics as biomass, plant height, leaf area, and so on. Also, the photosynthesis of the maize was inhabited, the anti-oxid activity decreased, and the MDA concentration increased with the UV-B radiation exposure. The maize presented visible hybrid vigor under the control condition, while the hybrid vigor under UV-B radiation barely emerged in biomass, plant height, leaf area, and physiological metabolic index.
文摘To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.