traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to...traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.展开更多
Objective: The dosimetric characteristics for linear accelerators with the same model, and nominal energy are known to be very similar, as long as the machines are unaltered from the manufacturer's original specif...Objective: The dosimetric characteristics for linear accelerators with the same model, and nominal energy are known to be very similar, as long as the machines are unaltered from the manufacturer's original specifications. In this preliminary study, a quantitative investigation of the similarity in the basic photon and electron dosimetry data from the Siemens Oncor linear accelerators at our hospital(Children's Cancer Hospital, Cairo, Egypt) was reported. Methods: The output factor(OF), wedge factors(WF), percentage depth dose(PDD), and beam profile for the 6 and 10 MV photon beams were measured. Results: The measured output factors varied by less than about 1% for each field size. The difference between the maximum and minimum PDD values at each depth was less than about 1%. The difference between the beam flattnes and symetry was no more than 1% at all off-axis distances. For electron the results showed that the PDD, OF, and the beam profiles were matched within 1% differences. Conclusion: These results strongly suggest that it is feasible to establish one reference photon and electron dosimetry data set for the two machines and nominal energies.展开更多
In this study, we analyzed the swing motions of more experienced practitioner and new practitioner of iaido players by using tri-axial acceleration sensor and gyro sensor. Iaido is a modern Japanese martial art/sport....In this study, we analyzed the swing motions of more experienced practitioner and new practitioner of iaido players by using tri-axial acceleration sensor and gyro sensor. Iaido is a modern Japanese martial art/sport. In this way, the acceleration and gyro sensor measurement enabled detailed motion information at the installation points to be displayed in a short time, thus making it possible to easily extract the objective problems. Although it was not possible to confirm by the acceleration and angular velocity measurements the detailed motion of the entire body as obtained in the 2D motion analysis with a high-speed camera, it was confirmed that the acceleration and gyro sensor is an evaluation means that can be installed easily and can provide the exercise information in a short time as an objective index.展开更多
Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt ...Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.展开更多
基金supported in part by National Science Foundation of China (Contract NO. 41030742)Guangxi Science Foundation and the Program for Science & Technology of Henan Province in China (Grant No. 142300410200)
文摘traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.
文摘Objective: The dosimetric characteristics for linear accelerators with the same model, and nominal energy are known to be very similar, as long as the machines are unaltered from the manufacturer's original specifications. In this preliminary study, a quantitative investigation of the similarity in the basic photon and electron dosimetry data from the Siemens Oncor linear accelerators at our hospital(Children's Cancer Hospital, Cairo, Egypt) was reported. Methods: The output factor(OF), wedge factors(WF), percentage depth dose(PDD), and beam profile for the 6 and 10 MV photon beams were measured. Results: The measured output factors varied by less than about 1% for each field size. The difference between the maximum and minimum PDD values at each depth was less than about 1%. The difference between the beam flattnes and symetry was no more than 1% at all off-axis distances. For electron the results showed that the PDD, OF, and the beam profiles were matched within 1% differences. Conclusion: These results strongly suggest that it is feasible to establish one reference photon and electron dosimetry data set for the two machines and nominal energies.
文摘In this study, we analyzed the swing motions of more experienced practitioner and new practitioner of iaido players by using tri-axial acceleration sensor and gyro sensor. Iaido is a modern Japanese martial art/sport. In this way, the acceleration and gyro sensor measurement enabled detailed motion information at the installation points to be displayed in a short time, thus making it possible to easily extract the objective problems. Although it was not possible to confirm by the acceleration and angular velocity measurements the detailed motion of the entire body as obtained in the 2D motion analysis with a high-speed camera, it was confirmed that the acceleration and gyro sensor is an evaluation means that can be installed easily and can provide the exercise information in a short time as an objective index.
文摘Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.