Sulfonate groups were introduced to the surfaces of multiwalled carbon nanotubes by the radiation-induced graft polymerization of sodium 4-styrene sulfonate for the use as biosensor supports. Alcohol dehydrogenase was...Sulfonate groups were introduced to the surfaces of multiwalled carbon nanotubes by the radiation-induced graft polymerization of sodium 4-styrene sulfonate for the use as biosensor supports. Alcohol dehydrogenase was immobilized onto a sulfonated nanotube-supporting electrode with tris(2,2'-bipyridyl) ruthenium(II) complex to form an electrogenerated chemilluminesce sensor of alcohol. When it was used to detect alcohol in cyclic voltammetric measurements, the sensor showed the linearity over the range of 1.0 × 10^-4 M-5.0 ×10^-2 M, with a correlation coefficient of 0.992 and a detection limit of 1.9 ×10^-6 M. In electrogenerated chemilluminesce detection, it showed linearity over 5.0 × 10^-4 M-1.0 × 10^-2 M, with a correlation coefficient of 0.986 and a detection limit of 1.0 × 10^-6 M. The sensor was demonstrated to be able to detect ethanol in commercial drinks.展开更多
文摘Sulfonate groups were introduced to the surfaces of multiwalled carbon nanotubes by the radiation-induced graft polymerization of sodium 4-styrene sulfonate for the use as biosensor supports. Alcohol dehydrogenase was immobilized onto a sulfonated nanotube-supporting electrode with tris(2,2'-bipyridyl) ruthenium(II) complex to form an electrogenerated chemilluminesce sensor of alcohol. When it was used to detect alcohol in cyclic voltammetric measurements, the sensor showed the linearity over the range of 1.0 × 10^-4 M-5.0 ×10^-2 M, with a correlation coefficient of 0.992 and a detection limit of 1.9 ×10^-6 M. In electrogenerated chemilluminesce detection, it showed linearity over 5.0 × 10^-4 M-1.0 × 10^-2 M, with a correlation coefficient of 0.986 and a detection limit of 1.0 × 10^-6 M. The sensor was demonstrated to be able to detect ethanol in commercial drinks.