In location-aided routing of Mobile Ad hoc NETworks(MANET),nodes mobility and the inaccuracy of location information may result in constant flooding,which will reduce the network performance.In this paper,a Distance-B...In location-aided routing of Mobile Ad hoc NETworks(MANET),nodes mobility and the inaccuracy of location information may result in constant flooding,which will reduce the network performance.In this paper,a Distance-Based Location-Aided Routing(DBLAR) for MANET has been proposed.By tracing the location information of destination nodes and referring to distance change between nodes to adjust route discovery dynamically,the proposed routing algorithm can avoid flooding in the whole networks.Besides,Distance Update Threshold(DUT) is set up to reach the balance between real-time ability and update overhead of location information of nodes,meanwhile,the detection of relative distance vector can achieve the goal of adjusting forwarding condition.Simulation results reveal that DBLAR performs better than LAR1 in terms of packet successful delivery ratio,average end-to-end delay and routing-load,and the set of DUT and relative distance vector has a significant impact on this algorithm.展开更多
A novel technique called the bitmap lattice index(BLI) is proposed, which combines the advantages of a wireless broadcasting environment with a road network. Existing road networks are based on the on-demand method: a...A novel technique called the bitmap lattice index(BLI) is proposed, which combines the advantages of a wireless broadcasting environment with a road network. Existing road networks are based on the on-demand method: a server's workload increases as the query request increases when a server sends a client information. To solve this problem, we propose the BLI. The BLI denotes an object and a node as 0 and 1 in the Hilbert curve(HC) map. The BLI can identify the position of a node and an object through bit information; it can also reduce the broadcasting frequency of a server by reducing the size of the index, thereby decreasing the access latency and query processing times. Moreover, the BLI is highly effective for data filtering, as it can identify the positions of both an object and a node. In a road network, if filtering is done via the Euclidean distance, it may result in an error. To prevent this, we add another validation procedure. The experiment is conducted by applying the BLI to kNN query, and the technique is assessed by a performance evaluation experiment.展开更多
基金Supported by National 863 High Technology Research and Development Program Foundation of China (No.2006AA-01Z208)Six Talented Eminence Foundation of Jiangsu Province (06-E-043), China+1 种基金Natural Science Foundation of Jiangsu Province, China (No.BK2007236)Scientific Innovation Project for Postgraduates of Universities in Jiangsu Province (CX08B-082Z)
文摘In location-aided routing of Mobile Ad hoc NETworks(MANET),nodes mobility and the inaccuracy of location information may result in constant flooding,which will reduce the network performance.In this paper,a Distance-Based Location-Aided Routing(DBLAR) for MANET has been proposed.By tracing the location information of destination nodes and referring to distance change between nodes to adjust route discovery dynamically,the proposed routing algorithm can avoid flooding in the whole networks.Besides,Distance Update Threshold(DUT) is set up to reach the balance between real-time ability and update overhead of location information of nodes,meanwhile,the detection of relative distance vector can achieve the goal of adjusting forwarding condition.Simulation results reveal that DBLAR performs better than LAR1 in terms of packet successful delivery ratio,average end-to-end delay and routing-load,and the set of DUT and relative distance vector has a significant impact on this algorithm.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF2013R1A1A1004593, 2013R1A1A1A05012348)
文摘A novel technique called the bitmap lattice index(BLI) is proposed, which combines the advantages of a wireless broadcasting environment with a road network. Existing road networks are based on the on-demand method: a server's workload increases as the query request increases when a server sends a client information. To solve this problem, we propose the BLI. The BLI denotes an object and a node as 0 and 1 in the Hilbert curve(HC) map. The BLI can identify the position of a node and an object through bit information; it can also reduce the broadcasting frequency of a server by reducing the size of the index, thereby decreasing the access latency and query processing times. Moreover, the BLI is highly effective for data filtering, as it can identify the positions of both an object and a node. In a road network, if filtering is done via the Euclidean distance, it may result in an error. To prevent this, we add another validation procedure. The experiment is conducted by applying the BLI to kNN query, and the technique is assessed by a performance evaluation experiment.