换相失败可能引起直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)闭锁,严重影响电网的安全稳定运行。多馈入直流输电系统中电气耦合紧密,控制响应造成多回LCC-HVDC交互影响,使换相失败的产生机...换相失败可能引起直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)闭锁,严重影响电网的安全稳定运行。多馈入直流输电系统中电气耦合紧密,控制响应造成多回LCC-HVDC交互影响,使换相失败的产生机理变得更加复杂。现有后续换相失败抑制方法多以单回LCC-HVDC为对象,无法兼顾自身换相恢复和相邻直流换相失败抑制的需求。为此,提出了一种适应于多馈入直流输电系统的后续换相失败抑制方法。分析了LCC-HVDC首次换相失败恢复过程中逆变站控制系统的响应时序及条件,提出了考虑故障严重程度和LCC-HVDC控制影响的后续换相失败安全裕度评估方法,进而提出了基于电压安全裕度的后续换相失败抑制方法,并在CIGRE HVDC标准测试系统验证了所提方法的有效性。仿真结果表明,所提方法根据换流母线电压自适应地调节直流电流,能够有效降低多馈入直流输电系统中无功电压耦合影响,有效抑制相邻回LCC-HVDC发生后续换相失败。展开更多
电网换相换流器高压直流输电系统(Line Commutated Converter based High Voltage Direct Current,LCC-HVDC)在功率传输特性、线路故障时的自防护能力、过负荷能力等方面均优于交流输电,但却无法向弱交流系统和无源网络供电。电压源换...电网换相换流器高压直流输电系统(Line Commutated Converter based High Voltage Direct Current,LCC-HVDC)在功率传输特性、线路故障时的自防护能力、过负荷能力等方面均优于交流输电,但却无法向弱交流系统和无源网络供电。电压源换流器高压直流输电系统(Voltage Source Converter based HVDC,VSC-HVDC)可实现向无源网络供电的目的,但由于电力电子技术的局限性,VSC-HVDC系统投资成本过高。结合两者的优势,提出了一种新型混合高压直流输电系统(Hybrid High Voltage Direct Current,H-HVDC)。该系统的整流侧为两个6脉动LCC接一交流网络,逆变侧为三相二电平VSC接无源网络。在此基础上,对该H-HVDC的稳态数学模型、启动特性、稳态特性与暂态特性、单极闭锁进行了研究。仿真结果表明,该H-HVDC系统能实现向无源网络供电,且具有较高的稳定性,为混合直流的进一步发展提供了理论基础。展开更多
文摘换相失败可能引起直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)闭锁,严重影响电网的安全稳定运行。多馈入直流输电系统中电气耦合紧密,控制响应造成多回LCC-HVDC交互影响,使换相失败的产生机理变得更加复杂。现有后续换相失败抑制方法多以单回LCC-HVDC为对象,无法兼顾自身换相恢复和相邻直流换相失败抑制的需求。为此,提出了一种适应于多馈入直流输电系统的后续换相失败抑制方法。分析了LCC-HVDC首次换相失败恢复过程中逆变站控制系统的响应时序及条件,提出了考虑故障严重程度和LCC-HVDC控制影响的后续换相失败安全裕度评估方法,进而提出了基于电压安全裕度的后续换相失败抑制方法,并在CIGRE HVDC标准测试系统验证了所提方法的有效性。仿真结果表明,所提方法根据换流母线电压自适应地调节直流电流,能够有效降低多馈入直流输电系统中无功电压耦合影响,有效抑制相邻回LCC-HVDC发生后续换相失败。
文摘电网换相换流器高压直流输电系统(Line Commutated Converter based High Voltage Direct Current,LCC-HVDC)在功率传输特性、线路故障时的自防护能力、过负荷能力等方面均优于交流输电,但却无法向弱交流系统和无源网络供电。电压源换流器高压直流输电系统(Voltage Source Converter based HVDC,VSC-HVDC)可实现向无源网络供电的目的,但由于电力电子技术的局限性,VSC-HVDC系统投资成本过高。结合两者的优势,提出了一种新型混合高压直流输电系统(Hybrid High Voltage Direct Current,H-HVDC)。该系统的整流侧为两个6脉动LCC接一交流网络,逆变侧为三相二电平VSC接无源网络。在此基础上,对该H-HVDC的稳态数学模型、启动特性、稳态特性与暂态特性、单极闭锁进行了研究。仿真结果表明,该H-HVDC系统能实现向无源网络供电,且具有较高的稳定性,为混合直流的进一步发展提供了理论基础。