知识图谱嵌入技术已在推荐系统领域引起广泛关注,将结构化知识图谱中的信息融入到推荐模型中,可以提高推荐的个性化程度。然而,因为初始数据的不准确性会导致推荐结果不正确,现存的知识图谱推荐模型中仍存在误差传播问题。针对这个问题...知识图谱嵌入技术已在推荐系统领域引起广泛关注,将结构化知识图谱中的信息融入到推荐模型中,可以提高推荐的个性化程度。然而,因为初始数据的不准确性会导致推荐结果不正确,现存的知识图谱推荐模型中仍存在误差传播问题。针对这个问题,该文提出了RR-KGE模型,由知识图谱嵌入模块和推荐算法模块组成;其中聚焦于知识图谱嵌入框架,将规则嵌入和知识图谱嵌入进行联合学习,通过规则给予模型更多的约束条件,以减少误差传播;并结合此框架将推荐算法ALS(Alternating Least Squares)和RNN(Recurrent Neural Network)相融合来获得更加精确的推荐结果;最后将RR-KGE与不同基准模型进行比较,在两个数据集上多项指标均优于对比模型,证明了推荐方法的有效性。展开更多
文摘知识图谱嵌入技术已在推荐系统领域引起广泛关注,将结构化知识图谱中的信息融入到推荐模型中,可以提高推荐的个性化程度。然而,因为初始数据的不准确性会导致推荐结果不正确,现存的知识图谱推荐模型中仍存在误差传播问题。针对这个问题,该文提出了RR-KGE模型,由知识图谱嵌入模块和推荐算法模块组成;其中聚焦于知识图谱嵌入框架,将规则嵌入和知识图谱嵌入进行联合学习,通过规则给予模型更多的约束条件,以减少误差传播;并结合此框架将推荐算法ALS(Alternating Least Squares)和RNN(Recurrent Neural Network)相融合来获得更加精确的推荐结果;最后将RR-KGE与不同基准模型进行比较,在两个数据集上多项指标均优于对比模型,证明了推荐方法的有效性。