锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
反后门学习方法(anti-backdoor learning,ABL)在利用中毒数据集进行模型训练过程中能实时检测并抑制后门生成,最终得到良性模型。但反后门学习方法存在后门样本和良性样本无法有效隔离、后门消除效率不高的问题。为此,提出遗忘学习前置...反后门学习方法(anti-backdoor learning,ABL)在利用中毒数据集进行模型训练过程中能实时检测并抑制后门生成,最终得到良性模型。但反后门学习方法存在后门样本和良性样本无法有效隔离、后门消除效率不高的问题。为此,提出遗忘学习前置的反后门学习方法(anti-backdoor learning method based on preposed unlearning,ABLPU),在隔离阶段对训练样本增加提纯操作,达到有效隔离良性样本的目标,在消除阶段采用后门遗忘-模型再训练的范式,并引入遗忘系数,实现后门的高效消除。在CIFAR-10数据集上针对后门攻击方法BadNets,遗忘学习前置的反后门学习方法较反后门学习方法(基线方法)良性准确率提高1.21个百分点,攻击成功率下降1.38个百分点。展开更多
现有知识追踪模型大多以概念为中心评估学生的未来表现,忽略了包含相同概念的练习之间的差异,从而影响模型的预测准确性。此外,在构建学生知识状态过程中,现有模型未能充分利用学生在答题过程中的学习遗忘特征,导致对学生知识状态的刻...现有知识追踪模型大多以概念为中心评估学生的未来表现,忽略了包含相同概念的练习之间的差异,从而影响模型的预测准确性。此外,在构建学生知识状态过程中,现有模型未能充分利用学生在答题过程中的学习遗忘特征,导致对学生知识状态的刻画不够精确。针对以上问题,提出了一种练习嵌入和学习遗忘特征增强的知识追踪模型(exercise embeddings and learning-forgetting features boosted knowledge tracing, ELFBKT)。该模型利用练习概念二部图中的显性关系,深入计算二部图中的隐性关系,构建了一个练习概念异构关系图。为充分利用异构图中的丰富关系信息,ELFBKT模型引入了关系图卷积网络。通过该网络的处理,模型能够增强练习嵌入的质量,并以练习为中心更准确地预测学生的未来表现。此外,ELFBKT充分利用多种学习遗忘特征,构建了两个门控机制,分别针对学生的学习行为和遗忘行为进行建模,更精确地刻画学生的知识状态。在两个真实世界数据集上进行实验,结果表明ELFBKT在知识追踪任务上的性能优于其他模型。展开更多
文摘反后门学习方法(anti-backdoor learning,ABL)在利用中毒数据集进行模型训练过程中能实时检测并抑制后门生成,最终得到良性模型。但反后门学习方法存在后门样本和良性样本无法有效隔离、后门消除效率不高的问题。为此,提出遗忘学习前置的反后门学习方法(anti-backdoor learning method based on preposed unlearning,ABLPU),在隔离阶段对训练样本增加提纯操作,达到有效隔离良性样本的目标,在消除阶段采用后门遗忘-模型再训练的范式,并引入遗忘系数,实现后门的高效消除。在CIFAR-10数据集上针对后门攻击方法BadNets,遗忘学习前置的反后门学习方法较反后门学习方法(基线方法)良性准确率提高1.21个百分点,攻击成功率下降1.38个百分点。
文摘现有知识追踪模型大多以概念为中心评估学生的未来表现,忽略了包含相同概念的练习之间的差异,从而影响模型的预测准确性。此外,在构建学生知识状态过程中,现有模型未能充分利用学生在答题过程中的学习遗忘特征,导致对学生知识状态的刻画不够精确。针对以上问题,提出了一种练习嵌入和学习遗忘特征增强的知识追踪模型(exercise embeddings and learning-forgetting features boosted knowledge tracing, ELFBKT)。该模型利用练习概念二部图中的显性关系,深入计算二部图中的隐性关系,构建了一个练习概念异构关系图。为充分利用异构图中的丰富关系信息,ELFBKT模型引入了关系图卷积网络。通过该网络的处理,模型能够增强练习嵌入的质量,并以练习为中心更准确地预测学生的未来表现。此外,ELFBKT充分利用多种学习遗忘特征,构建了两个门控机制,分别针对学生的学习行为和遗忘行为进行建模,更精确地刻画学生的知识状态。在两个真实世界数据集上进行实验,结果表明ELFBKT在知识追踪任务上的性能优于其他模型。