The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out t...The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.展开更多
To separate Pb from PbSO_(4)-coprecipitated jarosite,a novel thiourea-induced freeze-thaw cycling(T-FTC)process was investigated.Results show that distributed PbSO_(4)particles are pressed and aggregated around the ja...To separate Pb from PbSO_(4)-coprecipitated jarosite,a novel thiourea-induced freeze-thaw cycling(T-FTC)process was investigated.Results show that distributed PbSO_(4)particles are pressed and aggregated around the jarosite particles by T-FTC.Under the freezing-concentration effect of T-FTC,the reaction between PbSO_(4)and thiourea is also promoted,forming lead thiourea sulfate(Pb-tu).As the cycles of T-FTC increase,PbSO_(4)around jarosite disappears for the reaction of forming Pb-tu.After 12 cycles of T-FTC,a spontaneous separation is observed between Pb-tu and jarosite,i.e.,Pb-tu is separated into the upper layer while jarosite-rich phases remain in the lower layer.Due to this spontaneous separation,leaching toxicity of the jarosite coprecipitates is reduced by 73.7%.These results suggest that T-FTC process can achieve the separation of Pb from PbSO_(4)-coprecipitated jarosite and is a promising approach for removing and recovering metals from iron-rich jarosite residues.展开更多
基金Project (51174229) supported by the National Natural Science Foundation of China
文摘The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.
基金financially supported by the National Natural Science Foundation of China(Nos.51904355,51825403)the National Key R&D Program of China(No.2020YFC1909201)。
文摘To separate Pb from PbSO_(4)-coprecipitated jarosite,a novel thiourea-induced freeze-thaw cycling(T-FTC)process was investigated.Results show that distributed PbSO_(4)particles are pressed and aggregated around the jarosite particles by T-FTC.Under the freezing-concentration effect of T-FTC,the reaction between PbSO_(4)and thiourea is also promoted,forming lead thiourea sulfate(Pb-tu).As the cycles of T-FTC increase,PbSO_(4)around jarosite disappears for the reaction of forming Pb-tu.After 12 cycles of T-FTC,a spontaneous separation is observed between Pb-tu and jarosite,i.e.,Pb-tu is separated into the upper layer while jarosite-rich phases remain in the lower layer.Due to this spontaneous separation,leaching toxicity of the jarosite coprecipitates is reduced by 73.7%.These results suggest that T-FTC process can achieve the separation of Pb from PbSO_(4)-coprecipitated jarosite and is a promising approach for removing and recovering metals from iron-rich jarosite residues.