In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i...In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
This paper introduces the stress and deformation of anti floating anchor rod and explained the damage. Through field testing and numerical analysis, the article were studied the displacement and internal force of a ba...This paper introduces the stress and deformation of anti floating anchor rod and explained the damage. Through field testing and numerical analysis, the article were studied the displacement and internal force of a basement tensile anti float anchor, results showed that: the axial force of bolt tension transfer is top-down transfer, axial force decreases, the stress concentrate on the end. When a force is applied to a certain load, end firstly generate damage, but with the deepening of the axial force, it is greatly reduced, which indicates that the anchor force is an effective length, rather than the longer the anchor pullout force is bigger; anchor group effect is a problem that can not be ignored, because the engineering community for its attention degree is not enough, so that the design of anti floating anchor the lack of a reliable basis, the test results can provide a reference for the future design of anti floating anchor. Prestressed anchors in the tension lock, prestressed loss are regularly.展开更多
基金Projects(51304125,51379114)supported by the National Natural Science Foundation of ChinaProject(BS2013NJ004)supported by Award Fund for Outstanding Young and Middle-Aged Scientist of Shangdong Province,ChinaProject(201301004)supported by the Innovation Fund for Postdoctor of Shandong Province,China
文摘In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.
文摘This paper introduces the stress and deformation of anti floating anchor rod and explained the damage. Through field testing and numerical analysis, the article were studied the displacement and internal force of a basement tensile anti float anchor, results showed that: the axial force of bolt tension transfer is top-down transfer, axial force decreases, the stress concentrate on the end. When a force is applied to a certain load, end firstly generate damage, but with the deepening of the axial force, it is greatly reduced, which indicates that the anchor force is an effective length, rather than the longer the anchor pullout force is bigger; anchor group effect is a problem that can not be ignored, because the engineering community for its attention degree is not enough, so that the design of anti floating anchor the lack of a reliable basis, the test results can provide a reference for the future design of anti floating anchor. Prestressed anchors in the tension lock, prestressed loss are regularly.