A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mod...A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.展开更多
In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the opti...In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.展开更多
文摘A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.
文摘In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.