为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明...为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明)。我们指出在该文献的假设条件下,按照其思路不能证明出相应的结果。本文提出了不同的参数假设,并证明了算法具有类似的迭代复杂度。展开更多
文摘为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明)。我们指出在该文献的假设条件下,按照其思路不能证明出相应的结果。本文提出了不同的参数假设,并证明了算法具有类似的迭代复杂度。