With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic ...With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.展开更多
This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and ch...This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.展开更多
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal...Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.展开更多
The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation...The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors.展开更多
Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study...Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.展开更多
Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,b...Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,based on the high-performance L8BO,we selected 3-ethylheptyl to substitute the inner chain of 2-ethylhexyl,obtaining the backbone of BON3.Then we introduced different halogen atoms of fluorine and chlorine on 2-(3-oxo-2,3-dihydro-1Hinden-1-ylidene)malononitrile end group(EG)to construct efficient NFAs named BON3-F and BON3-Cl,respectively.Polymer donor D18 was chosen to combine with two novel NFAs to construct OSC devices.Impressively,D18:BON3-Cl-based device shows a remarkable power conversion efficiency(PCE)of 18.57%,with a high open-circuit voltage(V_(OC))of 0.907 V and an excellent fill factor(FF)of 80.44%,which is one of the highest binary PCE of devices based on D18 as the donor.However,BON3-F-based device shows a relatively lower PCE of 17.79%with a decreased FF of 79.05%.The better photovoltaic performance is mainly attributed to the red-shifted absorption,higher electron and hole mobilities,reduced charge recombination,and enhanced molecular packing in the D18:BON3-Cl films.Also,we performed stability tests on two binary systems;the D18:BON3-Cl and D18:BON3-F devices maintain 88.1%and 85.5%of their initial efficiencies after 169 h of storage at 85°C in an N2-filled glove box,respectively.Our work demonstrates the importance of selecting halogen atoms on EG and provides an efficient binary system of D18:BON3-Cl for further improvement of PCE.展开更多
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec...Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.展开更多
Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st...Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.展开更多
High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstr...High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on ...The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on a boron-doped diamond (BDD) electrode. The hydroxyl radicals were quantified indirectly by assaying the samples from the HClO4 (0.1 M) electrolysis with a 10−4 M potassium permanganate solution. The investigations showed that the amount of hydroxyl radicals depends on the concentration of HClO4 and the current density. As for chlorine, a qualitative determination was carried out. A mixture of the electrolyte solution of HClO4 (0.1 M) + NaI (0.2 M) + 2 mL of hexane, taken in this order, leads to a purplish-pink coloration attesting to the presence of Cl2. The same test was carried out with NaBr and NaI giving pale and very pale pink colourations, respectively, showing that the intensity of the colouration depends on the strength of the oxidant present. In addition, oxidants were detected during the electrooxidation of metronidazole (MNZ). The results showed the participation of electrogenerated hydroxyl radicals. The generation of chlorine has also been proven. Furthermore, the degradation leads to a chemical oxygen demand (COD) removal rate of 83.48% and the process is diffusion-controlled.展开更多
In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. La...In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.展开更多
Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that...Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that chlorine causes the most serious corrosion of carbon steel, and the higher the concentration of chlorine, the more serious the corrosion. On the contrary, metals corrosion is the least serious in the case of chlorine dioxide. The results further revealed that chlorine dioxide is the most effective water treatment reagent, making it the best choice to use extensively in circulated cooling water disinfection and corrosion control.展开更多
Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences...Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.展开更多
Chlorination roasting followed by water leaching process was used to extract lithium from lepidolite.The microstructure of the lepidolite and roasted materials were characterized by X-ray diffraction(XRD).Various pa...Chlorination roasting followed by water leaching process was used to extract lithium from lepidolite.The microstructure of the lepidolite and roasted materials were characterized by X-ray diffraction(XRD).Various parameters including chlorination roasting temperature,time,type and amount of chlorinating agents were optimized.The conditional experiments indicate that the best mass ratio of lepidolite to NaCl to CaCl2 is 1:0.6:0.4 during the roasting process.The extraction of lithium reaches peak value of 92.86% at 880 °C,potassium,rubidium,and cesium 88.49%,93.60% and 93.01%,respectively.The XRD result indicates that the major phases of the product after roasting lepidolite with mixture of chlorinating agents(CaCl2 and NaCl) are SiO2,CaF2,KCl,CaSiO3,CaAl2Si2O8,NaCl and NaAlSi3O8.展开更多
Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the mol...Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.展开更多
Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. I...Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.展开更多
A method was developed for determination of chlorine and bromine in plant materials by ion chromatography using temperature programing-semi molten for sample preparation. Values of detection limits of the method found...A method was developed for determination of chlorine and bromine in plant materials by ion chromatography using temperature programing-semi molten for sample preparation. Values of detection limits of the method found were 1.0×10^-5 for CI and 1.3×10^-6 for Br. The measuring range of the method found were 0.3-20.0 mg/L for CI and 4,0-120,0 μg/L for Br. The results obtained agreed quite well with those reference values.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52204310)the Guizhou Provincial Key Laboratory of Coal Clean Utilization(No.[2020]2001)+5 种基金the China Postdoctoral Science Foundation(Nos.2020TQ0059 and 2020M570967)the Natural Science Foundation of Liaoning Province(No.2021–MS–083)the Fundamental Research Funds for the Central Universities,China(No.N2125010)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology),Ministry of Education(No.JKF22–02)the Foundation of Liupanshui Normal University(No.LPSSYZDZK202205)the Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,China。
文摘With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.
文摘This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.
基金the National Natural Science Foundation of China(U21A20286,22206054 and 21805069)Natural Science Foundation of Hubei(2021CFB094)the Fundamental Research Funds for the Central China Normal University(CCNU)for financial support。
文摘Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.
基金supported by National Science Foundation of China(No.52201254)Natural Science Foundation of Shandong Province(Nos.ZR2020MB090,ZR2020MB027,and ZR2020QE012)+1 种基金the project of“20 Items of University”of Jinan(No.202228046)the Taishan Scholar Project of Shandong Province(No.tsqn202306226)。
文摘The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors.
基金funded by the Foundation of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants(Grant No.SEPKL-EHIAEC-202210)the Foundation of Shanghai Municipal Health Commission(Grant No.202240327)the Key Discipline Project of the Three-year Action Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)(Grant No.GWVI-11.1-38)。
文摘Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.
基金supported by the National Natural Science Foundation of China(No.U21A20331)the National Science Fund for Distinguished Young Scholars(No.21925506)+3 种基金Zhejiang Provincial Natural Science Foundation of China(No.LQ22E030013)Ningbo Key Scientific and Technological Project(2022Z117)Ningbo Public Welfare Science and Technology Planning Project(2021S149)ZBTI Scientific Research Innovation Team(KYTD202105).
文摘Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,based on the high-performance L8BO,we selected 3-ethylheptyl to substitute the inner chain of 2-ethylhexyl,obtaining the backbone of BON3.Then we introduced different halogen atoms of fluorine and chlorine on 2-(3-oxo-2,3-dihydro-1Hinden-1-ylidene)malononitrile end group(EG)to construct efficient NFAs named BON3-F and BON3-Cl,respectively.Polymer donor D18 was chosen to combine with two novel NFAs to construct OSC devices.Impressively,D18:BON3-Cl-based device shows a remarkable power conversion efficiency(PCE)of 18.57%,with a high open-circuit voltage(V_(OC))of 0.907 V and an excellent fill factor(FF)of 80.44%,which is one of the highest binary PCE of devices based on D18 as the donor.However,BON3-F-based device shows a relatively lower PCE of 17.79%with a decreased FF of 79.05%.The better photovoltaic performance is mainly attributed to the red-shifted absorption,higher electron and hole mobilities,reduced charge recombination,and enhanced molecular packing in the D18:BON3-Cl films.Also,we performed stability tests on two binary systems;the D18:BON3-Cl and D18:BON3-F devices maintain 88.1%and 85.5%of their initial efficiencies after 169 h of storage at 85°C in an N2-filled glove box,respectively.Our work demonstrates the importance of selecting halogen atoms on EG and provides an efficient binary system of D18:BON3-Cl for further improvement of PCE.
基金This study was supported by the National Nat-ural Science Foundation of China(No.22379105)the Natural Sci-ence Foundation of Shanxi Province(Nos.20210302123110 and 202303021211059)the Open Fund Project of Ningxia Sinostar Display Material Co.,Ltd.
文摘Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.
基金supported by the National Natural Science Foundation of China(Grant No.51708078)Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0815)+2 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200542)the Chongqing Innovative Research Group Project(Grant No.CXQT21015)Foundation of Chongqing Normal University(22XLB022).
文摘Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.
基金the financial support of the National Natural Science Foundation of China(52162027,52274297 and 52164028)the Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ091)+4 种基金the Hainan Provincial Natural Science Foundation of China(project Nos.221RC540)Hainan Provincial Postdoctoral Science Foundation(project Nos.2022-BH-25)the Collaborative Innovation Center of Marine Science and Technology(Hainan University)the Start-up Research Foundation of Hainan University(KYQD(ZR)2008,23069,23073 and 23067)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)。
文摘High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.
文摘The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on a boron-doped diamond (BDD) electrode. The hydroxyl radicals were quantified indirectly by assaying the samples from the HClO4 (0.1 M) electrolysis with a 10−4 M potassium permanganate solution. The investigations showed that the amount of hydroxyl radicals depends on the concentration of HClO4 and the current density. As for chlorine, a qualitative determination was carried out. A mixture of the electrolyte solution of HClO4 (0.1 M) + NaI (0.2 M) + 2 mL of hexane, taken in this order, leads to a purplish-pink coloration attesting to the presence of Cl2. The same test was carried out with NaBr and NaI giving pale and very pale pink colourations, respectively, showing that the intensity of the colouration depends on the strength of the oxidant present. In addition, oxidants were detected during the electrooxidation of metronidazole (MNZ). The results showed the participation of electrogenerated hydroxyl radicals. The generation of chlorine has also been proven. Furthermore, the degradation leads to a chemical oxygen demand (COD) removal rate of 83.48% and the process is diffusion-controlled.
文摘In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.
文摘Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that chlorine causes the most serious corrosion of carbon steel, and the higher the concentration of chlorine, the more serious the corrosion. On the contrary, metals corrosion is the least serious in the case of chlorine dioxide. The results further revealed that chlorine dioxide is the most effective water treatment reagent, making it the best choice to use extensively in circulated cooling water disinfection and corrosion control.
文摘Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.
文摘Chlorination roasting followed by water leaching process was used to extract lithium from lepidolite.The microstructure of the lepidolite and roasted materials were characterized by X-ray diffraction(XRD).Various parameters including chlorination roasting temperature,time,type and amount of chlorinating agents were optimized.The conditional experiments indicate that the best mass ratio of lepidolite to NaCl to CaCl2 is 1:0.6:0.4 during the roasting process.The extraction of lithium reaches peak value of 92.86% at 880 °C,potassium,rubidium,and cesium 88.49%,93.60% and 93.01%,respectively.The XRD result indicates that the major phases of the product after roasting lepidolite with mixture of chlorinating agents(CaCl2 and NaCl) are SiO2,CaF2,KCl,CaSiO3,CaAl2Si2O8,NaCl and NaAlSi3O8.
基金Project (u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan ProvinceProject (20095314110003) supported by the Special Research Funds of the Doctor Subject of Higher School,China
文摘Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.
文摘Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.
文摘A method was developed for determination of chlorine and bromine in plant materials by ion chromatography using temperature programing-semi molten for sample preparation. Values of detection limits of the method found were 1.0×10^-5 for CI and 1.3×10^-6 for Br. The measuring range of the method found were 0.3-20.0 mg/L for CI and 4,0-120,0 μg/L for Br. The results obtained agreed quite well with those reference values.