The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp...The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.展开更多
The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow ...The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.展开更多
Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce da...Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.展开更多
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si...The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.展开更多
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press...Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.展开更多
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this...Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.展开更多
Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinea...Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinear Bloch dynamics of the Bose-Einstein condensate with two-body and three-body interactions in deep optical lattices is studied.The damping rate induced by interactions is obtained.The damping induced by two-body interaction plays a dominant role,while the damping induced by three-body interaction is weak.However,when the two-body and three-body interactions satisfy a threshold,long-lived coherent BOs are observed.Furthermore,the Bloch dynamics with periodical modulation of linear force is studied.The frequencies of linear force corresponding to resonance and pseudoresonance are obtained,and rich dynamical phenomena,i.e.,stable and strong BOs,drifting and dispersion of wave packet,are predicted.The controllable Bloch dynamics is provided with the periodic modulation of the linear force.展开更多
The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin...The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt.展开更多
The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
A new simulation model for the development of gas condensate reservoirs is introduced based on the influence that phase change,non-Darcy flow,and capillary pressure have on the production of gas condensates.The model ...A new simulation model for the development of gas condensate reservoirs is introduced based on the influence that phase change,non-Darcy flow,and capillary pressure have on the production of gas condensates.The model predicts well performance,including bottom-hole pressure,oil/gas production rate,oil/gas recovery,gaseoil ratio,and the change in produced fluid composition.It also calculates dynamic characters,such as the change of pressure field and oil/gas saturation field during the development of gas condensate reservoirs.The model is applicable to different boundary conditions(both constant-pressure and sealed boundary)and different production modes(both constant-pressure and constant-volume production modes).Model validation attempted using numerical simulation results for sealed boundary conditions with constant-pressure production mode has shown a relatively good match,proving its validity.For constant-pressure boundary conditions with constant-volume production mode,four stages are defined according to the dynamic behavior of production performance in the development of gas condensate reservoirs.展开更多
Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive anal...Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.展开更多
This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydr...This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydrocarbons and biomarker fingerprints. A comparison study is also made between the geochemical characteristics of the Kekeya hydrocarbons and typical marine and terrigenous hydrocarbons of the Tarim Basin. Natural gas from the Kekeya gas condensate field is derived from Middle–Lower Jurassic coal measures while the condensates are derived from Carboniferous–Permian marine source rocks with a higher maturity. In the study area, both natural gas and condensates have experienced severe water washing. A large amount of methane was dissolved into the water, resulting in a decrease in the dryness coefficient. Water washing also makes the carbon isotopic compositions of the natural gas more negative and partially reverse. Considering that the gas maturities are higher than once expected, gas generation intensity in the study area should be much stronger and the gas related to the Jurassic coal measures could promise a greater prospecting potential. As a result of evaporative fractionation, the Kekeya condensates are enriched in saturates and lack aromatics. Evaporative fractionation disguises the original terrigenous characteristics of the light hydrocarbons associated with the natural gas, making it appear marinesourced. Thus, alteration processes should be fully taken into consideration when gas–source correlations are carried out based on light hydrocarbons. With the condensates discovered in the study area all being "migration phase", the pre-salt Cretaceous and Jurassic reservoirs may promise great exploration potential for the "residual phase" hydrocarbons. This research not only is of significance for oil and gas exploration in the southwest Tarim Basin, but also sheds light on the oil/gas-source correlations in general.展开更多
By means of a relativistic effective potential, we analytically research competition between the quark- antiquark condensates (qq) and the diquark condensates (qq) in vacuum in ground state of a two-flavor Nambu J...By means of a relativistic effective potential, we analytically research competition between the quark- antiquark condensates (qq) and the diquark condensates (qq) in vacuum in ground state of a two-flavor Nambu Jona Lasinio (NJL) model and obtain the Gs-Hs phase diagram, where Gs and Hs are the respective four-fermion coupling constants in scalar quark-antiquark channel and scalar color anti-triplet diquark channel. The results show that, in the chiral limit, there is only the pure (qq) phase when Gs/Hs 〉 2/3, and as Gs/Hs decreases to 2/3 〉 Gs/Hs ≥ 0 one will first have a coexistence phase of the condensates (qq) and (qq) and then a pure (qq) phase. In non-zero bare quark mass case, the critical value of Gs/Hs at which the pure (qq) phase will transfer to the coexistence phase of the condensates (qq) and (qq) will be less than 2/3. Our theoretical results, combined with present phenomenological fact that there is no diquark condensates in the vacuum of QCD, will also impose a real restriction to any given two-flavor NJL model which is intended to simulate QCD, i.e. in such model the resulting sma/lest ratio Gs/Hs after the Fierz transformations in the Hartree approximation must be larger than 2/3. A few phenomenological QCD-like NJL models are checked and analyzed.展开更多
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne...Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.展开更多
Based on three-dimensional quantum electrodynamics theory,a set of truncated Dyson-Schwinger(D-S) equations are solved to study photon and fermion propagators with the effect of vacuum polarization.Numerical studies...Based on three-dimensional quantum electrodynamics theory,a set of truncated Dyson-Schwinger(D-S) equations are solved to study photon and fermion propagators with the effect of vacuum polarization.Numerical studies show that condensation and the value of fermion mass depends heavily on how the D-S equations are truncated.By solving a set of coupled D-S equations,it is also found that the fermion propagator shows a clear dependence on the order parameter.The truncated D-S equations under unquenched approximation are used to study the mass-function and chiral condensation of the fermions.The results under the unquenched approximation are clearly different from the ones under quenched approximation.With the increase in the order parameter,the fermion condensation in the unquenched approximation decreases when 0≤ξ5,while it increases when ξ5.However,nothing like this is observed in the quenched approximation,which indicates that there may be flaws in the quenched approximations.展开更多
The problem of an adequate description of the wave processes in Bose-Einstein condensates (CBE), including space-temporal evolution of CBE in the electron CBE condensate in the self-consistent electrical field and CBE...The problem of an adequate description of the wave processes in Bose-Einstein condensates (CBE), including space-temporal evolution of CBE in the electron CBE condensate in the self-consistent electrical field and CBE atomic condensate in the self-consistent gravitational field is considered. The complete nonlocal system for the CBE evolution is delivered including particular case and analytical solutions.展开更多
We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and ...We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.展开更多
The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxation...The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements. According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.展开更多
The pressure drop during production in the near-wellbore zone of gas condensate reservoirs causes condensate formation in this area.Condensate blockage in this area causes an additional pressure drop that weakens the ...The pressure drop during production in the near-wellbore zone of gas condensate reservoirs causes condensate formation in this area.Condensate blockage in this area causes an additional pressure drop that weakens the effective parameters of production,such as permeability.Reservoir rock wettability alteration to gas-wet through chemical treatment is one of the solutions to produce these condensates and eliminate condensate blockage in the area.In this study,an anionic fluorinated surfactant was synthesized and used for chemical treatment and carbonate rock wettability alteration.The synthesized surfactant was characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis.Then,using surface tension tests,its critical micelle concentration(CMC)was determined.Contact angle experiments on chemically treated sections with surfactant solutions and spontaneous imbibition were performed to investigate the wettability alteration.Surfactant adsorption on porous media was calculated using flooding.Finally,the surfactant foamability was investigated using a Ross-Miles foam generator.According to the results,the synthesized surfactant has suitable thermal stability for use in gas condensate reservoirs.A CMC of 3500 ppm was obtained for the surfactant based on the surface tension experiments.Contact angle experiments show the ability of the surfactant to chemical treatment and wettability alteration of carbonate rocks to gas-wet so that at the constant concentration of CMC and at 373 K,the contact angles at treatment times of 30,60,120 and 240 min were obtained 87.94°,93.50°,99.79°and 106.03°,respectively.However,this ability varies at different surfactant concentrations and temperatures.The foamability test also shows the suitable stability of the foam generated by the surfactant,and a foam half-life time of 13 min was obtained for the surfactant at CMC.展开更多
基金the National Natural Science Foundation of China(Nos.52122402,12172334,52034010,52174051)Shandong Provincial Natural Science Foundation(Nos.ZR2021ME029,ZR2022JQ23)Fundamental Research Funds for the Central Universities(No.22CX01001A-4)。
文摘The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.
基金This paper was subsidized by the 15th National key Sci-Tech Project (NO.2001BA605A02-04-01)
文摘The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LQ22A040006,LY21A040004,LR22A040001,and LZ21A040001)the National Natural Science Foundation of China(Grant Nos.11835011 and 12074342).
文摘Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.
文摘The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.
基金Supported by National Natural Science Foundation of China(52104049)Young Elite Scientist Sponsorship Program by BAST(BYESS2023262)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004).
文摘Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12264045,12164042,11764039,11847304,and 11865014)the Natural Science Foundation of Gansu Province (Grant No.17JR5RA07620JR5RA526)+2 种基金the Scientific Research Project of Gansu Higher Education (Grant No.2016A-005)the Innovation Capability Enhancement Project of Gansu Higher Education (Grant Nos.2020A146 and 2019A-014)the Creation of Science and Technology of Northwest Normal University (Grant No.NWNULKQN-18-33)。
文摘Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinear Bloch dynamics of the Bose-Einstein condensate with two-body and three-body interactions in deep optical lattices is studied.The damping rate induced by interactions is obtained.The damping induced by two-body interaction plays a dominant role,while the damping induced by three-body interaction is weak.However,when the two-body and three-body interactions satisfy a threshold,long-lived coherent BOs are observed.Furthermore,the Bloch dynamics with periodical modulation of linear force is studied.The frequencies of linear force corresponding to resonance and pseudoresonance are obtained,and rich dynamical phenomena,i.e.,stable and strong BOs,drifting and dispersion of wave packet,are predicted.The controllable Bloch dynamics is provided with the periodic modulation of the linear force.
文摘The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
基金supported by a National Science and Technology Major Project(2016ZX05048003).
文摘A new simulation model for the development of gas condensate reservoirs is introduced based on the influence that phase change,non-Darcy flow,and capillary pressure have on the production of gas condensates.The model predicts well performance,including bottom-hole pressure,oil/gas production rate,oil/gas recovery,gaseoil ratio,and the change in produced fluid composition.It also calculates dynamic characters,such as the change of pressure field and oil/gas saturation field during the development of gas condensate reservoirs.The model is applicable to different boundary conditions(both constant-pressure and sealed boundary)and different production modes(both constant-pressure and constant-volume production modes).Model validation attempted using numerical simulation results for sealed boundary conditions with constant-pressure production mode has shown a relatively good match,proving its validity.For constant-pressure boundary conditions with constant-volume production mode,four stages are defined according to the dynamic behavior of production performance in the development of gas condensate reservoirs.
基金funding from the Key Research Project of Tarim Oilfield Company of Petrochina(671023060003)for this study.
文摘Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.
基金funded by the National Natural Science Foundation of China (grant No.41503044)the Fundamental Research Program of PetroChina (grant No.2014B–0608)
文摘This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydrocarbons and biomarker fingerprints. A comparison study is also made between the geochemical characteristics of the Kekeya hydrocarbons and typical marine and terrigenous hydrocarbons of the Tarim Basin. Natural gas from the Kekeya gas condensate field is derived from Middle–Lower Jurassic coal measures while the condensates are derived from Carboniferous–Permian marine source rocks with a higher maturity. In the study area, both natural gas and condensates have experienced severe water washing. A large amount of methane was dissolved into the water, resulting in a decrease in the dryness coefficient. Water washing also makes the carbon isotopic compositions of the natural gas more negative and partially reverse. Considering that the gas maturities are higher than once expected, gas generation intensity in the study area should be much stronger and the gas related to the Jurassic coal measures could promise a greater prospecting potential. As a result of evaporative fractionation, the Kekeya condensates are enriched in saturates and lack aromatics. Evaporative fractionation disguises the original terrigenous characteristics of the light hydrocarbons associated with the natural gas, making it appear marinesourced. Thus, alteration processes should be fully taken into consideration when gas–source correlations are carried out based on light hydrocarbons. With the condensates discovered in the study area all being "migration phase", the pre-salt Cretaceous and Jurassic reservoirs may promise great exploration potential for the "residual phase" hydrocarbons. This research not only is of significance for oil and gas exploration in the southwest Tarim Basin, but also sheds light on the oil/gas-source correlations in general.
基金The project supported by National Natural Science Foundation of China under Grant No, 10475113
文摘By means of a relativistic effective potential, we analytically research competition between the quark- antiquark condensates (qq) and the diquark condensates (qq) in vacuum in ground state of a two-flavor Nambu Jona Lasinio (NJL) model and obtain the Gs-Hs phase diagram, where Gs and Hs are the respective four-fermion coupling constants in scalar quark-antiquark channel and scalar color anti-triplet diquark channel. The results show that, in the chiral limit, there is only the pure (qq) phase when Gs/Hs 〉 2/3, and as Gs/Hs decreases to 2/3 〉 Gs/Hs ≥ 0 one will first have a coexistence phase of the condensates (qq) and (qq) and then a pure (qq) phase. In non-zero bare quark mass case, the critical value of Gs/Hs at which the pure (qq) phase will transfer to the coexistence phase of the condensates (qq) and (qq) will be less than 2/3. Our theoretical results, combined with present phenomenological fact that there is no diquark condensates in the vacuum of QCD, will also impose a real restriction to any given two-flavor NJL model which is intended to simulate QCD, i.e. in such model the resulting sma/lest ratio Gs/Hs after the Fierz transformations in the Hartree approximation must be larger than 2/3. A few phenomenological QCD-like NJL models are checked and analyzed.
基金Project“973",a national fundamental research development program
文摘Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.
基金The Science Foundation of Southeast University,the National Natural Science Foundation of China (No. 11047005)
文摘Based on three-dimensional quantum electrodynamics theory,a set of truncated Dyson-Schwinger(D-S) equations are solved to study photon and fermion propagators with the effect of vacuum polarization.Numerical studies show that condensation and the value of fermion mass depends heavily on how the D-S equations are truncated.By solving a set of coupled D-S equations,it is also found that the fermion propagator shows a clear dependence on the order parameter.The truncated D-S equations under unquenched approximation are used to study the mass-function and chiral condensation of the fermions.The results under the unquenched approximation are clearly different from the ones under quenched approximation.With the increase in the order parameter,the fermion condensation in the unquenched approximation decreases when 0≤ξ5,while it increases when ξ5.However,nothing like this is observed in the quenched approximation,which indicates that there may be flaws in the quenched approximations.
文摘The problem of an adequate description of the wave processes in Bose-Einstein condensates (CBE), including space-temporal evolution of CBE in the electron CBE condensate in the self-consistent electrical field and CBE atomic condensate in the self-consistent gravitational field is considered. The complete nonlocal system for the CBE evolution is delivered including particular case and analytical solutions.
基金Project supported by National Natural Science Foundation of China (Grant No.10864006)the Key Research Project of Xinjiang Higher Education,China (Grant No.XJED2010141),the Key Discipline of Theoretical Physics of Xinjiang,China,and the Prior Development Subject of Theoretical Physics of Xinjiang Normal University,China
文摘We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.
基金supported by the National Natural Science Foundation of China(Grant No.11264039)the Key Discipline of Theoretical Physics of Xinjiang,China(Grant Nos.LLWLY201202 and LLWLY201203)the Postgraduate Scientific and Theoretical Innovation Project of Xinjiang Normal University,China(Grant No.20131234)
文摘The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements. According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.
文摘The pressure drop during production in the near-wellbore zone of gas condensate reservoirs causes condensate formation in this area.Condensate blockage in this area causes an additional pressure drop that weakens the effective parameters of production,such as permeability.Reservoir rock wettability alteration to gas-wet through chemical treatment is one of the solutions to produce these condensates and eliminate condensate blockage in the area.In this study,an anionic fluorinated surfactant was synthesized and used for chemical treatment and carbonate rock wettability alteration.The synthesized surfactant was characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis.Then,using surface tension tests,its critical micelle concentration(CMC)was determined.Contact angle experiments on chemically treated sections with surfactant solutions and spontaneous imbibition were performed to investigate the wettability alteration.Surfactant adsorption on porous media was calculated using flooding.Finally,the surfactant foamability was investigated using a Ross-Miles foam generator.According to the results,the synthesized surfactant has suitable thermal stability for use in gas condensate reservoirs.A CMC of 3500 ppm was obtained for the surfactant based on the surface tension experiments.Contact angle experiments show the ability of the surfactant to chemical treatment and wettability alteration of carbonate rocks to gas-wet so that at the constant concentration of CMC and at 373 K,the contact angles at treatment times of 30,60,120 and 240 min were obtained 87.94°,93.50°,99.79°and 106.03°,respectively.However,this ability varies at different surfactant concentrations and temperatures.The foamability test also shows the suitable stability of the foam generated by the surfactant,and a foam half-life time of 13 min was obtained for the surfactant at CMC.