During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which...During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).展开更多
The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated...The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.展开更多
Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu...Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.展开更多
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a...Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.展开更多
The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.A...The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.As a component of the 4th conceptual CEPC detector,the drift chamber facilitates the measurement of charged particles.This study implemented a Geant4-based simulation and track reconstruction for the drift chamber.For the simulation,detector construction and response were implemented and added to the CEPC simulation chain.The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit.Using the simulated data,the tracking performance was studied.The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.展开更多
An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was develo...An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.展开更多
The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re...The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.展开更多
In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current...In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.展开更多
The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conv...The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.展开更多
In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,trunca...In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.展开更多
Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investi...Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, ownership of a rubber hand is temporarily induced. It was shown that external and continuous cooling of the palm enhanced the RHI, suggesting an association between altered the autonomic nervous system regulation and altered the sense of ownership of a specific limb. Purpose: To investigate whether artificially cooling the entire hand for a short period affects the magnitude of the illusion. Methods: Participants immersed their entire hand in cool, cold, or warm water for 1 min before the RHI procedure. Results: We found that cooling the entire hand enhanced the proprioceptive drift during the RHI but not the subjective feeling of ownership. In contrast, warming and intense cooling of the entire hand did not affect the RHI strength. Conclusion: Our results suggest that transient and moderate cooling of the entire hand was sufficient in enhancing the illusory disembodiment of one’s own hand.展开更多
A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multi...A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.展开更多
To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters o...To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters of a nuclear pulse signal by learning of samples.A predefined mathematical model was used to train the CNN-LSTM model and generate a dataset composed of distorted pulse sequences.The trained model was validated using simulated pulses.The relative errors in the amplitude estimation of pulse sequences with different degrees of distortion were obtained using triangular shaping,CNN-LSTM,and LSTM models.As a result,for severely distorted pulses,the relative error of the CNN-LSTM model in estimating the pulse parameters was reduced by 14.35%compared with that of the triangular shaping algorithm.For slightly distorted pulses,the relative error of the CNN-LSTM model was reduced by 0.33%compared with that of the triangular shaping algorithm.The model was then evaluated considering two performance indicators,the correction ratio and the efficiency ratio,which represent the proportion of the increase in peak area of the two characteristic peak regions of interest(ROIs)to the peak area of the corrected characteristic peak ROI and the proportion of the increase in peak area of the two characteristic peak ROIs to the peak areas of the two shadow peak ROI,respectively.Ten measurement results of the iron ore samples indicate that approximately 86.27%of the decreased peak area of the shadow peak ROI was corrected to the characteristic peak ROI,and the proportion of the corrected peak area to the peak area of the characteristic peak ROI was approximately 1.72%.The proposed CNN-LSTM model can be applied to X-ray energy spectrum correction,which is of great significance for X-ray spectroscopy and elemental content analyses.展开更多
Temporary seismic network deployments often suffer from incorrect timing records and thus pose a challenge to fully utilize the valuable data.To inspect and fix such time problems,the ambient noise cross-correlation f...Temporary seismic network deployments often suffer from incorrect timing records and thus pose a challenge to fully utilize the valuable data.To inspect and fix such time problems,the ambient noise cross-correlation function(NCCF)has been widely adopted by using daily waveforms.However,it is still challenging to detect the shortterm clock drift and overcome the influence of local noise on NCCF.To address these challenges,we conduct a study on two temporary datasets,including an ocean-bottom-seismometer(OBS)dataset from the southern Mariana subduction zone and a dataset from a temporary dense network from the Weiyuan shale gas field,Sichuan,China.We first inspect the teleseismic and local event waveforms to evaluate the overall clock drift and data quality for both datasets.For the OBS dataset,NCCF using different time segments(3,6,and 12-h)beside daily waveforms data is computed to select the data length with optimal detection capability.Eventually,the 6-h segment is the preferred choice with high detection efficiency and low noise level.For the land dataset,higher drift detection is achieved by NCCF using the daily long waveforms.Meanwhile,we find that NCCF symmetry on the dense array is highly influenced by localized intense noise for large interstation distances(>1 km)but is well preserved for short interstation distances.The results have shown that the use of different segments of daily waveform data in the OBS dataset,and the careful selection of interstation distances in the land dataset substantially improved the NCCF results.All the clock drifts in both datasets are successfully corrected and verified with waveforms and NCCF.The newly developed strategies using short-segment NCCF help to overcome the existing issues to correct the clock drift of seismic data.展开更多
The outbreak of Ulva in the Yellow Sea has seriously affected marine ecology and economic activities.Therefore,effective prediction of the distribution of Ulva is of great significance for disaster prevention and redu...The outbreak of Ulva in the Yellow Sea has seriously affected marine ecology and economic activities.Therefore,effective prediction of the distribution of Ulva is of great significance for disaster prevention and reduction.However,the prediction method of Ulva is mainly based on numerical simulation.There are two problems with these methods.First is that the initial distribution of Ulva is simulated using independent pixel-level particles.Besides,the influence of Ulva growth and diffusion on the drift is not considered.Therefore,this paper proposes a multi-module with a two-way feedback method(MTF)to solve the above problems.The main contributions of our approach are summarized as follows.First,the initialization module,the generation and elimination module,and the drive module are composed in our way.Second,we proposed an initialization method using rectangle objects to simulate the Ulva distribution extracted from remote sensing images.Thirdly,the drift and diffusion mechanism of the Ulva is considered to realize the two-way feedback between the generation and elimination module and the drive module.The results of our experiments show that the MTF performs better than the traditional method in predicting the drift and diffusion of Ulva.The code is already publicly available at https://github.com/UPCGIT/A-multi-module-with-a-two-way-feedback-method-for-Ulva-drift-diffusion.展开更多
Concept drift is a main security issue that has to be resolved since it presents a significant barrier to the deployment of machine learning(ML)models.Due to attackers’(and/or benign equivalents’)dynamic behavior ch...Concept drift is a main security issue that has to be resolved since it presents a significant barrier to the deployment of machine learning(ML)models.Due to attackers’(and/or benign equivalents’)dynamic behavior changes,testing data distribution frequently diverges from original training data over time,resulting in substantial model failures.Due to their dispersed and dynamic nature,distributed denial-of-service attacks pose a danger to cybersecurity,resulting in attacks with serious consequences for users and businesses.This paper proposes a novel design for concept drift analysis and detection of malware attacks like Distributed Denial of Service(DDOS)in the network.The goal of this architecture combination is to accurately represent data and create an effective cyber security prediction agent.The intrusion detection system and concept drift of the network has been analyzed using secure adaptive windowing with website data authentication protocol(SAW_WDA).The network has been analyzed by authentication protocol to avoid malware attacks.The data of network users will be collected and classified using multilayer perceptron gradient decision tree(MLPGDT)classifiers.Based on the classification output,the decision for the detection of attackers and authorized users will be identified.The experimental results show output based on intrusion detection and concept drift analysis systems in terms of throughput,end-end delay,network security,network concept drift,and results based on classification with regard to accuracy,memory,and precision and F-1 score.展开更多
To better understand divertor detachment and asymmetry in the Experimental Advanced Superconducting Tokamak(EAST),drift modeling via the comprehensive edge plasma code SOLPS-ITER of neon impurity seeded plasmas in fav...To better understand divertor detachment and asymmetry in the Experimental Advanced Superconducting Tokamak(EAST),drift modeling via the comprehensive edge plasma code SOLPS-ITER of neon impurity seeded plasmas in favorable/unfavorable toroidal magnetic field(BT)has been performed.Firstly,electrostatic potential/field(f/E)distribution has been analyzed,to make sure that f and E are correctly described and to better understand drift-driven processes.After that,drift effects on divertor detachment and asymmetry have been focused on.In accordance with the corresponding experimental observations,simulation results demonstrate that in favorable BTthe onset of detachment is highly asymmetric between the inner and outer divertors;and reversing BT can significantly decrease the magnitude of in-out asymmetry in the onset of detachment,physics reasons for which have been explored.It is found that,apart from the well-known E×B drift particle flow from one divertor to the other through the private flux region,scrape-off layer(SOL)heat flow,which is much more asymmetrically distributed between the high field side and low field side for favorable BTthan that for unfavorable B_T,is also a critical parameter affecting divertor detachment and asymmetry.During detachment,upstream pressure(P_u)reduction occurs and tends to be more dramatical in the colder side than that in the hotter side.The convective SOL heat flow,emerging due to in-out asymmetry in P_u reduction,is found to be critical for understanding divertor detachment and asymmetry observed in EAST.To better understand the calculated drastic power radiation in the core and upstream SOL,drift effects on divertor leakage/retention of neon in EAST with both BTdirections have been addressed for the first time,by analyzing profile of poloidal neon velocity and that of neon ionization source from atoms.This work can be a reference for future numeric simulations performed more closely related to experimental regimes.展开更多
Oil spill prediction is critical for reducing the detrimental impact of oil spills on marine ecosystems,and the wind strong-ly influences the performance of oil spill models.However,the wind drift factor is assumed to...Oil spill prediction is critical for reducing the detrimental impact of oil spills on marine ecosystems,and the wind strong-ly influences the performance of oil spill models.However,the wind drift factor is assumed to be constant or parameterized by linear regression and other methods in existing studies,which may limit the accuracy of the oil spill simulation.A parameterization method for wind drift factor(PMOWDF)based on deep learning,which can effectively extract the time-varying characteristics on a regional scale,is proposed in this paper.The method was adopted to forecast the oil spill in the East China Sea.The discrepancies between predicted positions and actual measurement locations of the drifters are obtained using seasonal statistical analysis.Results reveal that PMOWDF can improve the accuracy of oil spill simulation compared with the traditional method.Furthermore,the parameteriza-tion method is validated with satellite observations of the Sanchi oil spill in 2018.展开更多
Every application in a smart city environment like the smart grid,health monitoring, security, and surveillance generates non-stationary datastreams. Due to such nature, the statistical properties of data changes over...Every application in a smart city environment like the smart grid,health monitoring, security, and surveillance generates non-stationary datastreams. Due to such nature, the statistical properties of data changes overtime, leading to class imbalance and concept drift issues. Both these issuescause model performance degradation. Most of the current work has beenfocused on developing an ensemble strategy by training a new classifier on thelatest data to resolve the issue. These techniques suffer while training the newclassifier if the data is imbalanced. Also, the class imbalance ratio may changegreatly from one input stream to another, making the problem more complex.The existing solutions proposed for addressing the combined issue of classimbalance and concept drift are lacking in understating of correlation of oneproblem with the other. This work studies the association between conceptdrift and class imbalance ratio and then demonstrates how changes in classimbalance ratio along with concept drift affect the classifier’s performance.We analyzed the effect of both the issues on minority and majority classesindividually. To do this, we conducted experiments on benchmark datasetsusing state-of-the-art classifiers especially designed for data stream classification.Precision, recall, F1 score, and geometric mean were used to measure theperformance. Our findings show that when both class imbalance and conceptdrift problems occur together the performance can decrease up to 15%. Ourresults also show that the increase in the imbalance ratio can cause a 10% to15% decrease in the precision scores of both minority and majority classes.The study findings may help in designing intelligent and adaptive solutionsthat can cope with the challenges of non-stationary data streams like conceptdrift and class imbalance.展开更多
We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Her...We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas.展开更多
基金The Fundamental Research Fund Project of the First Institute of OceanographyMinistry of Natural Resources+1 种基金under contract No.GY022Y07the National Natural Science Foundation of China under contract No.42106232。
文摘During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).
基金supported by the National Natural Science Foundation of China(No.42176020)the National Key Research and Development Program(No.2022 YFC3105002).
文摘The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFB2601100)the National Natural Science Foundation of China(Grant No.52171246)+4 种基金The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019491911)the Open Research Foundation of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2005)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC3136)the Natural Science Foundation of Hunan Province(Grant No.2022JJ20041)Educational Science Foundation of Hunan Province(Grant No.23A0265)。
文摘Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.
基金financially supported by the National Key Research and Development Program of China(2017YFD0200304)。
文摘Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12025502 and 12341504)。
文摘The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.As a component of the 4th conceptual CEPC detector,the drift chamber facilitates the measurement of charged particles.This study implemented a Geant4-based simulation and track reconstruction for the drift chamber.For the simulation,detector construction and response were implemented and added to the CEPC simulation chain.The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit.Using the simulated data,the tracking performance was studied.The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.
基金supported by the Natural Resources Development Special Fund Project of Jiangsu Province(No.JSZRHYKJ202009)the Taishan Scholar Funds(No.tsqn 201812022)+2 种基金the Fundamental Research Funds for the Central Universities(No.202072001)the Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Beibu Gulf University(No.2021KF03)the National Natural Science Foundation of China(No.42176020).
文摘An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975062 and 11605021)the Fundamental Research Funds for the Central Universities (Grant No.3132023192)。
文摘The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.
基金funded by the Basic Research on National Defense of China(No.JCKY2021603B033),which is gratefully acknowledged。
文摘In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.
基金financially supported by the National Natural Science Foundation of China(Grant No.62074089)the Natural Science Foundation of Ningbo City,China(Grant No.2022J072)+1 种基金the Youth Science and Technology Innovation Leading Talent Project of Ningbo City,China(Grant No.2023QL005)sponsored by the K.C.Wong Magna Fund in Ningbo University。
文摘The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.
基金Supported by the National Natural Science Foundation of China(11926322)the Fundamental Research Funds for the Central Universities of South-Central MinZu University(CZY22013,3212023sycxjj001)。
文摘In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.
文摘Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, ownership of a rubber hand is temporarily induced. It was shown that external and continuous cooling of the palm enhanced the RHI, suggesting an association between altered the autonomic nervous system regulation and altered the sense of ownership of a specific limb. Purpose: To investigate whether artificially cooling the entire hand for a short period affects the magnitude of the illusion. Methods: Participants immersed their entire hand in cool, cold, or warm water for 1 min before the RHI procedure. Results: We found that cooling the entire hand enhanced the proprioceptive drift during the RHI but not the subjective feeling of ownership. In contrast, warming and intense cooling of the entire hand did not affect the RHI strength. Conclusion: Our results suggest that transient and moderate cooling of the entire hand was sufficient in enhancing the illusory disembodiment of one’s own hand.
基金The work was supported by the National Natural Science Foundation of China(No.51874045)National Natural Science Foundation-Youth Foundation(52104056)+2 种基金Department of Natural Resources of Guangdong Province(GDNRC[2021]56)Postdoctoral innovative talents support program in China(BX2021374)Scientific Research Program of Hubei Provincial Department of Education(T2021004).
文摘A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.
基金This work was supported by the Open Project of the Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-05)Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike ZY22096024)+3 种基金Sichuan Natural Science Youth Fund Project(No.2023NSFSC1366)Open Research Fund of the National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University(No.AE202209)Research Fund of Guangxi Key Lab of Multi-source Information Mining&Security(MIMS22-04)National Natural Science Youth Foundation of China(No.12305214).
文摘To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters of a nuclear pulse signal by learning of samples.A predefined mathematical model was used to train the CNN-LSTM model and generate a dataset composed of distorted pulse sequences.The trained model was validated using simulated pulses.The relative errors in the amplitude estimation of pulse sequences with different degrees of distortion were obtained using triangular shaping,CNN-LSTM,and LSTM models.As a result,for severely distorted pulses,the relative error of the CNN-LSTM model in estimating the pulse parameters was reduced by 14.35%compared with that of the triangular shaping algorithm.For slightly distorted pulses,the relative error of the CNN-LSTM model was reduced by 0.33%compared with that of the triangular shaping algorithm.The model was then evaluated considering two performance indicators,the correction ratio and the efficiency ratio,which represent the proportion of the increase in peak area of the two characteristic peak regions of interest(ROIs)to the peak area of the corrected characteristic peak ROI and the proportion of the increase in peak area of the two characteristic peak ROIs to the peak areas of the two shadow peak ROI,respectively.Ten measurement results of the iron ore samples indicate that approximately 86.27%of the decreased peak area of the shadow peak ROI was corrected to the characteristic peak ROI,and the proportion of the corrected peak area to the peak area of the characteristic peak ROI was approximately 1.72%.The proposed CNN-LSTM model can be applied to X-ray energy spectrum correction,which is of great significance for X-ray spectroscopy and elemental content analyses.
基金supported by National Science Foundation of China(U2139203)National Key R&D Program of China (2018YFC1503400)+3 种基金China Earthquake Science Experiment Project,CEA (2019CSES0107)HKSAR Research Grant Council GRF Grant (14303721,14306122)State Key Lab of Earthquake Dynamics (LED2021B03)the Faculty of Science,CUHK。
文摘Temporary seismic network deployments often suffer from incorrect timing records and thus pose a challenge to fully utilize the valuable data.To inspect and fix such time problems,the ambient noise cross-correlation function(NCCF)has been widely adopted by using daily waveforms.However,it is still challenging to detect the shortterm clock drift and overcome the influence of local noise on NCCF.To address these challenges,we conduct a study on two temporary datasets,including an ocean-bottom-seismometer(OBS)dataset from the southern Mariana subduction zone and a dataset from a temporary dense network from the Weiyuan shale gas field,Sichuan,China.We first inspect the teleseismic and local event waveforms to evaluate the overall clock drift and data quality for both datasets.For the OBS dataset,NCCF using different time segments(3,6,and 12-h)beside daily waveforms data is computed to select the data length with optimal detection capability.Eventually,the 6-h segment is the preferred choice with high detection efficiency and low noise level.For the land dataset,higher drift detection is achieved by NCCF using the daily long waveforms.Meanwhile,we find that NCCF symmetry on the dense array is highly influenced by localized intense noise for large interstation distances(>1 km)but is well preserved for short interstation distances.The results have shown that the use of different segments of daily waveform data in the OBS dataset,and the careful selection of interstation distances in the land dataset substantially improved the NCCF results.All the clock drifts in both datasets are successfully corrected and verified with waveforms and NCCF.The newly developed strategies using short-segment NCCF help to overcome the existing issues to correct the clock drift of seismic data.
基金The Shandong Provincial Natural Science Foundation of China under contract No.ZR2019MD023the National Natural Science Foundation of China under contract No.41776182.
文摘The outbreak of Ulva in the Yellow Sea has seriously affected marine ecology and economic activities.Therefore,effective prediction of the distribution of Ulva is of great significance for disaster prevention and reduction.However,the prediction method of Ulva is mainly based on numerical simulation.There are two problems with these methods.First is that the initial distribution of Ulva is simulated using independent pixel-level particles.Besides,the influence of Ulva growth and diffusion on the drift is not considered.Therefore,this paper proposes a multi-module with a two-way feedback method(MTF)to solve the above problems.The main contributions of our approach are summarized as follows.First,the initialization module,the generation and elimination module,and the drive module are composed in our way.Second,we proposed an initialization method using rectangle objects to simulate the Ulva distribution extracted from remote sensing images.Thirdly,the drift and diffusion mechanism of the Ulva is considered to realize the two-way feedback between the generation and elimination module and the drive module.The results of our experiments show that the MTF performs better than the traditional method in predicting the drift and diffusion of Ulva.The code is already publicly available at https://github.com/UPCGIT/A-multi-module-with-a-two-way-feedback-method-for-Ulva-drift-diffusion.
基金The Taif University Deanship of Scientific Research supported this endeavor(Project Number:1-443-4)for which the authors are grateful to Taif University for their kind support.
文摘Concept drift is a main security issue that has to be resolved since it presents a significant barrier to the deployment of machine learning(ML)models.Due to attackers’(and/or benign equivalents’)dynamic behavior changes,testing data distribution frequently diverges from original training data over time,resulting in substantial model failures.Due to their dispersed and dynamic nature,distributed denial-of-service attacks pose a danger to cybersecurity,resulting in attacks with serious consequences for users and businesses.This paper proposes a novel design for concept drift analysis and detection of malware attacks like Distributed Denial of Service(DDOS)in the network.The goal of this architecture combination is to accurately represent data and create an effective cyber security prediction agent.The intrusion detection system and concept drift of the network has been analyzed using secure adaptive windowing with website data authentication protocol(SAW_WDA).The network has been analyzed by authentication protocol to avoid malware attacks.The data of network users will be collected and classified using multilayer perceptron gradient decision tree(MLPGDT)classifiers.Based on the classification output,the decision for the detection of attackers and authorized users will be identified.The experimental results show output based on intrusion detection and concept drift analysis systems in terms of throughput,end-end delay,network security,network concept drift,and results based on classification with regard to accuracy,memory,and precision and F-1 score.
基金supported by National Natural Sciences Foundation of China(Nos.12075052,12175034 and 12275098)National Key R&D Program of China(Nos.2018YFE0309103,2017YFE0301100 and 2017YFE0301104)。
文摘To better understand divertor detachment and asymmetry in the Experimental Advanced Superconducting Tokamak(EAST),drift modeling via the comprehensive edge plasma code SOLPS-ITER of neon impurity seeded plasmas in favorable/unfavorable toroidal magnetic field(BT)has been performed.Firstly,electrostatic potential/field(f/E)distribution has been analyzed,to make sure that f and E are correctly described and to better understand drift-driven processes.After that,drift effects on divertor detachment and asymmetry have been focused on.In accordance with the corresponding experimental observations,simulation results demonstrate that in favorable BTthe onset of detachment is highly asymmetric between the inner and outer divertors;and reversing BT can significantly decrease the magnitude of in-out asymmetry in the onset of detachment,physics reasons for which have been explored.It is found that,apart from the well-known E×B drift particle flow from one divertor to the other through the private flux region,scrape-off layer(SOL)heat flow,which is much more asymmetrically distributed between the high field side and low field side for favorable BTthan that for unfavorable B_T,is also a critical parameter affecting divertor detachment and asymmetry.During detachment,upstream pressure(P_u)reduction occurs and tends to be more dramatical in the colder side than that in the hotter side.The convective SOL heat flow,emerging due to in-out asymmetry in P_u reduction,is found to be critical for understanding divertor detachment and asymmetry observed in EAST.To better understand the calculated drastic power radiation in the core and upstream SOL,drift effects on divertor leakage/retention of neon in EAST with both BTdirections have been addressed for the first time,by analyzing profile of poloidal neon velocity and that of neon ionization source from atoms.This work can be a reference for future numeric simulations performed more closely related to experimental regimes.
基金funded by the Social Science Foundation of Shandong(No.20CXWJ08).
文摘Oil spill prediction is critical for reducing the detrimental impact of oil spills on marine ecosystems,and the wind strong-ly influences the performance of oil spill models.However,the wind drift factor is assumed to be constant or parameterized by linear regression and other methods in existing studies,which may limit the accuracy of the oil spill simulation.A parameterization method for wind drift factor(PMOWDF)based on deep learning,which can effectively extract the time-varying characteristics on a regional scale,is proposed in this paper.The method was adopted to forecast the oil spill in the East China Sea.The discrepancies between predicted positions and actual measurement locations of the drifters are obtained using seasonal statistical analysis.Results reveal that PMOWDF can improve the accuracy of oil spill simulation compared with the traditional method.Furthermore,the parameteriza-tion method is validated with satellite observations of the Sanchi oil spill in 2018.
基金The authors would like to extend their gratitude to Universiti Teknologi PETRONAS (Malaysia)for funding this research through grant number (015LA0-037).
文摘Every application in a smart city environment like the smart grid,health monitoring, security, and surveillance generates non-stationary datastreams. Due to such nature, the statistical properties of data changes overtime, leading to class imbalance and concept drift issues. Both these issuescause model performance degradation. Most of the current work has beenfocused on developing an ensemble strategy by training a new classifier on thelatest data to resolve the issue. These techniques suffer while training the newclassifier if the data is imbalanced. Also, the class imbalance ratio may changegreatly from one input stream to another, making the problem more complex.The existing solutions proposed for addressing the combined issue of classimbalance and concept drift are lacking in understating of correlation of oneproblem with the other. This work studies the association between conceptdrift and class imbalance ratio and then demonstrates how changes in classimbalance ratio along with concept drift affect the classifier’s performance.We analyzed the effect of both the issues on minority and majority classesindividually. To do this, we conducted experiments on benchmark datasetsusing state-of-the-art classifiers especially designed for data stream classification.Precision, recall, F1 score, and geometric mean were used to measure theperformance. Our findings show that when both class imbalance and conceptdrift problems occur together the performance can decrease up to 15%. Ourresults also show that the increase in the imbalance ratio can cause a 10% to15% decrease in the precision scores of both minority and majority classes.The study findings may help in designing intelligent and adaptive solutionsthat can cope with the challenges of non-stationary data streams like conceptdrift and class imbalance.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(No.2019YFE03030000)National Natural Science Foundation of China(Nos.11905253 and U19A20113)。
文摘We find that the perturbed Lagrangian derived from the drift-kinetic equation in[Porcelli F et al 1994 Phys.Plasmas 1470]is inconsistent with the ordering for the low-frequency large-scale magnetohydrodynamic(MHD).Here,we rederive the expression for the perturbed Lagrangian within the framework of nonideal MHD using the ordering system for the low-frequency largescale MHD in a low-beta plasma.The obtained perturbed Lagrangian is consistent with Chen's gyrokinetic theory[Chen L and Zonca F 2016 Rev.Mod.Phys.88015008],where the terms related to the field curvature and gradient are small quantities of higher order and thus negligible.As the perturbed Lagrangian has been widely used in the literature to calculate the plasma nonadiabatic response in low-frequency MHD applications,this finding may have a significant impact on the understanding of the kinetic driving and dissipative mechanisms of MHD instabilities and the plasma response to electromagnetic perturbations in fusion plasmas.