Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovas...Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.展开更多
针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-fr...针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。展开更多
基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)对线性调频(Linear Frequency Modulated,LFM)信号参数进行估计,问题关键是确定FRFT最佳阶数,根据误差迭代思想提出新的参数估计算法,该算法利用归一化带宽和旋转角的转化关系...基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)对线性调频(Linear Frequency Modulated,LFM)信号参数进行估计,问题关键是确定FRFT最佳阶数,根据误差迭代思想提出新的参数估计算法,该算法利用归一化带宽和旋转角的转化关系,由估计误差推算角度差值,有效降低了运算量,不需要调频斜率正负的先验信息,改进的对数搜索算法可以进一步提高参数估计结果的稳定性和可靠性。仿真结果表明,信噪比在-8 dB以上时该方法在高效率的前提下仍具有良好的参数估计性能,平均估计误差在1%以内,估计结果接近Cramer-Rao下限,满足工程实时处理需求。展开更多
压制干扰信号从天线主瓣进入雷达接收机,会严重影响雷达的性能,通常的副瓣抗干扰技术难以奏效。线性调频(linear frequency modulation,LFM)信号在分数阶傅里叶域(fractional Fourier transform,FRFT)会出现能量高度聚集的现象,利用LFM...压制干扰信号从天线主瓣进入雷达接收机,会严重影响雷达的性能,通常的副瓣抗干扰技术难以奏效。线性调频(linear frequency modulation,LFM)信号在分数阶傅里叶域(fractional Fourier transform,FRFT)会出现能量高度聚集的现象,利用LFM信号的这一特征,提出了基于FRFT的雷达抗主瓣干扰技术。首先对接收到的主瓣干扰混合信号进行FRFT处理,然后在FRFT域滤波去除大部分压制干扰和噪声的能量,最后FRFT逆变换恢复出目标信号。仿真实验表明,新方法对脉冲压缩以后的峰值信噪比有较大的改善,较大地提高了脉冲压缩雷达的检测性能,具有良好的应用前景。展开更多
基金the National Natural Sci-ence Foundation of China(No.62301056)the Fundamental Research Funds for Central Universities(No.2022QN005).
文摘Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.
文摘针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。
文摘压制干扰信号从天线主瓣进入雷达接收机,会严重影响雷达的性能,通常的副瓣抗干扰技术难以奏效。线性调频(linear frequency modulation,LFM)信号在分数阶傅里叶域(fractional Fourier transform,FRFT)会出现能量高度聚集的现象,利用LFM信号的这一特征,提出了基于FRFT的雷达抗主瓣干扰技术。首先对接收到的主瓣干扰混合信号进行FRFT处理,然后在FRFT域滤波去除大部分压制干扰和噪声的能量,最后FRFT逆变换恢复出目标信号。仿真实验表明,新方法对脉冲压缩以后的峰值信噪比有较大的改善,较大地提高了脉冲压缩雷达的检测性能,具有良好的应用前景。