目前,国内高速铁路使用基于全球铁路移动通信系统(Global System for Mobile Communications-Railway,GSM-R)的双向无线通信系统,实现列车与地面之间的安全信息传输。然而,无线通信存在传输延迟和丢包,严重时会影响运行效率,因此需要研...目前,国内高速铁路使用基于全球铁路移动通信系统(Global System for Mobile Communications-Railway,GSM-R)的双向无线通信系统,实现列车与地面之间的安全信息传输。然而,无线通信存在传输延迟和丢包,严重时会影响运行效率,因此需要研究GSM-R系统服务质量(Quality of Service,QoS)参数,以满足实时性和可用性需求。选取传输延时作为待优化的GSM-R无线通信系统QoS参数,定量分析端到端传输延迟时间,提出基于无线传输参数自适应的加强学习优化方案。仿真结果表明,该方法可以显著提升无线通信系统性能。展开更多
As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is al...As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.展开更多
移动通信运营商在铁路沿线部署了公众移动通信网络,采用的数字全球通信系统(Global System of Mobile Communication, GSM)原理和制式与铁路全球移动通信系统(Global System of Mobile Communication for Railways, GSM-R)完全相同,对GS...移动通信运营商在铁路沿线部署了公众移动通信网络,采用的数字全球通信系统(Global System of Mobile Communication, GSM)原理和制式与铁路全球移动通信系统(Global System of Mobile Communication for Railways, GSM-R)完全相同,对GSM-R造成了一定干扰。为了对这些干扰源进行定位,提出了一种基于相差变化率的干扰源定位技术。该技术基于二元阵列接收系统,根据阵元与干扰源之间的时空关系,初始以方位角的变化率与干扰源位置建立关系模型,借助微分变形建立了以相差变化率为自变量的干扰源位置求解模型和解算方法。为了避免采集数据中的异常样本对最终的定位结果产生影响,设计了一种基于孤立森林的异常样本过滤算法,利用数据点自身的特征属性构建多维特征空间实现异常数据点的检测和消除。搭建实景环境对铁路沿线无线电数据进行采集并开展数据分析工作,结果表明所提基于孤立森林的异常样本过滤算法能够有效剔除异常数据,提高整体样本的质量。使用相同的已知位置干扰源无线采集数据开展与基于频差变化率的定位方法和基于振幅变化率的定位方法的定位能力对比试验,统计不同方法对于每个干扰源的最小定位误差,结果表明基于频差和振幅变化率定位方法的平均定位误差分别是所提方法的7.18、20.73倍,证明了所提方法的定位精度显著优于基于频差变化率的定位方法和基于振幅变化率的定位方法,具有较高的定位精度。展开更多
文摘目前,国内高速铁路使用基于全球铁路移动通信系统(Global System for Mobile Communications-Railway,GSM-R)的双向无线通信系统,实现列车与地面之间的安全信息传输。然而,无线通信存在传输延迟和丢包,严重时会影响运行效率,因此需要研究GSM-R系统服务质量(Quality of Service,QoS)参数,以满足实时性和可用性需求。选取传输延时作为待优化的GSM-R无线通信系统QoS参数,定量分析端到端传输延迟时间,提出基于无线传输参数自适应的加强学习优化方案。仿真结果表明,该方法可以显著提升无线通信系统性能。
文摘As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.
文摘移动通信运营商在铁路沿线部署了公众移动通信网络,采用的数字全球通信系统(Global System of Mobile Communication, GSM)原理和制式与铁路全球移动通信系统(Global System of Mobile Communication for Railways, GSM-R)完全相同,对GSM-R造成了一定干扰。为了对这些干扰源进行定位,提出了一种基于相差变化率的干扰源定位技术。该技术基于二元阵列接收系统,根据阵元与干扰源之间的时空关系,初始以方位角的变化率与干扰源位置建立关系模型,借助微分变形建立了以相差变化率为自变量的干扰源位置求解模型和解算方法。为了避免采集数据中的异常样本对最终的定位结果产生影响,设计了一种基于孤立森林的异常样本过滤算法,利用数据点自身的特征属性构建多维特征空间实现异常数据点的检测和消除。搭建实景环境对铁路沿线无线电数据进行采集并开展数据分析工作,结果表明所提基于孤立森林的异常样本过滤算法能够有效剔除异常数据,提高整体样本的质量。使用相同的已知位置干扰源无线采集数据开展与基于频差变化率的定位方法和基于振幅变化率的定位方法的定位能力对比试验,统计不同方法对于每个干扰源的最小定位误差,结果表明基于频差和振幅变化率定位方法的平均定位误差分别是所提方法的7.18、20.73倍,证明了所提方法的定位精度显著优于基于频差变化率的定位方法和基于振幅变化率的定位方法,具有较高的定位精度。