Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and...Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.展开更多
Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which...Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which are very important in semi-arid mountain ecosystems.However,how different tree species affect soil nutrients and soil physicochemical properties after afforestation,and which is the best plantation species for improving soil fertility and water conservation functions remain largely unknown.Methods:This study investigated the soil nutrient contents of three different plantations(Larix principis-rupprechtii,Picea crassifolia,Pinus tabuliformis),soils and plant-soil feedbacks,as well as the interactions between soil physicochemical properties.Results:The results revealed that the leaves and litter layers strongly influenced soil nutrient availability through biogeochemical processes:P.tabuliformis had higher organic carbon,ratio of organic carbon to total nitrogen(C:N)and organic carbon to total phosphorus(C:P)in the leaves and litter layers than L.principis-rupprechtii or P.crassifolia,suggesting that higher C:N and C:P hindered litter decomposition.As a result,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved soil nutrients and clay components,compared with the P.tabuliformis plantation forest.Furthermore,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved the soil capacity,soil total porosity,and capillary porosity,decreased soil bulk density,and enhanced water storage capacity,compared with the P.tabuliformis plantation forest.The results of this study showed that,the strong link between plants and soil was tightly coupled to C:N and C:P,and there was a close correlation between soil particle size distribution and soil physicochemical properties.Conclusions:Therefore,our results recommend planting the L.principis-rupprechtii and P.crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions,especially in semi-arid regions mountain forest ecosystems.展开更多
Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to ...Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.展开更多
Desert plants take on unique physiologically adaptive mechanisms in response to an adverse environment. In this study, we determined the concentrations of leaf nitrogen(N), phosphorus(P), and calcium(Ca) fraction for ...Desert plants take on unique physiologically adaptive mechanisms in response to an adverse environment. In this study, we determined the concentrations of leaf nitrogen(N), phosphorus(P), and calcium(Ca) fraction for dominant species of Artemisia ordosica, A. frigida, Calligonum mongolicum, and Oxytropis aciphylla in the Alxa Desert and discussed seasonal changes of their leaf N:P ratio and Ca fraction. The results showed that, from May to September, the N:P ratios of A. ordosica and C. mongolicum gradually and significantly increased, while those of A. frigida, and O. aciphylla had an increase trend that was not significant; the physiologically active Ca of A. ordosica and A. frigida increased significantly,while that of C. mongolicum and O. aciphylla decreased significantly. The physiologically inert calcium of C. mongolicum increased extremely significantly, while that of others was not significant. There was a significantly positive correlation between the N:P ratio and physiologically active Ca for A. ordosica, and the N:P ratio was significantly and negatively correlated with physiologically active Ca for O. aciphylla. These findings revealed that the physiological regulation mechanism was different for the plants either in earlier stage or later stage of plant-community succession.展开更多
Soil calcium carbonate(CaCO_3) has a strong solid phosphorus effect, and high content of CaCO_3 can significantly reduce the effectiveness of soil phosphorus. To reveal the limiting effect of soil CaCO_3 on the growth...Soil calcium carbonate(CaCO_3) has a strong solid phosphorus effect, and high content of CaCO_3 can significantly reduce the effectiveness of soil phosphorus. To reveal the limiting effect of soil CaCO_3 on the growth of plants on sand land and its mechanism of plant physiology, we performed pot experiments with a two-factor randomized block design and a three-factor orthogonal design for different soil CaCO_3 content treatments using Artemisia ordosica seedlings. In the experiments, we surveyed plant height, aboveground biomass, root length and root weight and analyzed N, P concentrations and RNA content of the seedlings, and discussed the relationships between relative growth rate(RGR) of the seedlings and N:P ratio as well as RNA. Results show that, the RGRs of plant height and above-ground biomass of the seedlings decreased significantly with the increase of soil CaCO_3 content, and those for root length and root weight decreased. The RGRs of plant height and above-ground biomass of the seedlings were significantly negatively correlated with leaf N:P ratios, but significantly positively correlated with leaf RNA content and leaf P concentrations. It can be seen that soil CaCO_3 is a stress factor for the growth of A. ordosica seedlings, and the growth response of the seedlings under the influence of soil CaCO_3 is in line with the Growth Rate Hypothesis.展开更多
To address how the ratios of nitrogen and phosphorus (N:P ratios) in soil affect plant growth, we performed a two-factor (soil available N:P ratios and plant density) randomized block pot experiment to examine the rel...To address how the ratios of nitrogen and phosphorus (N:P ratios) in soil affect plant growth, we performed a two-factor (soil available N:P ratios and plant density) randomized block pot experiment to examine the relationships between soil N:P ratios, and the N:P ratios and growth rate of Artemisia ordosica seedlings. Under moderate water stress and adequate nutrient status, both soil N:P and plant density influenced the N:P ratios and growth rates of A. ordosica. With the increase of soil N:P ratios, the growth rates of A. ordosica seedlings decreased significantly. With the increase of soil N:P ratios, N:P ratios in A. ordosica seedlings increased significantly. While the nitrogen concentrations in the plant increased slightly, the phosphorus concentrations significantly decreased. With the increase of plant density, the shoot N:P ratios and growth rates significantly decreased, which resulted from soil N:P ratios. Thus, soil N:P ratios influenced the N:P ratios in A. ordosica seedlings, and hence, influenced its growth. Our results suggest that, under adequate nutrient environment, soil N:P ratios can be a limiting factor for plant growth.展开更多
Attitudes regarding traditional energy sources have shifted toward renewable resources. Specifically, short-rotation woody crop supply systems have become more prevalent for biomass and biofuel production. However, a ...Attitudes regarding traditional energy sources have shifted toward renewable resources. Specifically, short-rotation woody crop supply systems have become more prevalent for biomass and biofuel production. However, a number of factors such as environmental and inherent resource availability can limit tree production. Given the intensified demand for wood biomass production, forest and plantation management practices are focusing on increasing productivity. Fertilizer application, while generally one of the least expensive silvicultural tools, can become costly if application rates exceed nutrient uptake or demand of the trees especially if it does not result in additional biomass production. We investigated the effect of water and varying levels of nitrogen application (56, 112, and 224 kg·N·haǃ·yrǃ) on nutrient content, resorption efficiency and proficiency, N:P and the relationship with ANPP, as well as leaf- and canopy-level nutrient use efficiency of nitrogen, phosphorus, and potassium for Populus deltoides, Quercus pagoda, and Platanus occidentalis. P. deltoides and P. occidentalis reached their maximum nitrogen budget with the application of water suggesting old agricultural fields may have sufficient nutrient levels to sustain short-rotation woody crops negating the application of additional nitrogen for these two species. Additionally, for P. deltoides and Q. pagoda application of nitrogen appeared to increase the uptake of phosphorus however, resorption efficiency for these two species were more similar to studies conducted on nutrient poor sites. Nutrient resorption proficiency for all three nutrients and all three species were at levels below the highest rates of nitrogen application. These findings suggest maximum biomass production may not necessarily be tied to maximum nutrient application.展开更多
The purpose of the current study was to investigate the eco-physiological responses,in terms of growth and C:N:P stoichiometry of plants cultured from dimorphic seeds of a single-cell C4 annual Suaeda aralocaspica(Bun...The purpose of the current study was to investigate the eco-physiological responses,in terms of growth and C:N:P stoichiometry of plants cultured from dimorphic seeds of a single-cell C4 annual Suaeda aralocaspica(Bunge)Freitag and Schütze under elevated CO_(2).A climatic chamber experiment was conducted to examine the effects of ambient(720μg/L)and CO_(2)-enriched(1440μg/L)treatments on these responses in S.aralocaspica at vegetative and reproductive stages in 2012.Result showed that elevated CO_(2) significantly increased shoot dry weight,but decreased N:P ratio at both growth stages.Plants grown from dimorphic seeds did not exhibit significant differences in growth and C:N:P stoichiometric characteristics.The transition from vegetation to reproductive stage significantly increased shoot:root ratio,N and P contents,but decreased C:N,C:P and N:P ratios,and did not affect shoot dry weight.Moreover,our results indicate that the changes in N:P and C:N ratios between ambient and elevated CO_(2) are mainly caused by the decrease of N content under elevated CO_(2).These results provide an insight into nutritional metabolism of single-cell C4 plants under climate change.展开更多
Nitrogen(N)is one of the most limited nutrients of terrestrial ecosystems,whose losses are prevented in tightly coupled cycles in finely tuned systems.Global change-induced N enrichment through atmospheric deposition ...Nitrogen(N)is one of the most limited nutrients of terrestrial ecosystems,whose losses are prevented in tightly coupled cycles in finely tuned systems.Global change-induced N enrichment through atmospheric deposition and application of vast amounts of fertilizer are now challenging the terrestrial N cycle.Arbuscular mycorrhizal fungi(AMF)are known drivers of plant-soil nutrient fluxes,but a comprehensive assessment of AMF involvement in N cycling under global change is still lacking.Here,we simulated N enrichment by fertilization(low/high)in experimental grassland microcosms under greenhouse conditions in the presence or absence of AMF and continuously monitored different N pathways over nine months.We found that high N enrichment by fertilization decreased the relative abundance of legumes and the plant species dominating the plant community changed from grasses to forbs in the presence of AMF,based on aboveground biomass.The presence of AMF always maintained plant N:phosphorus(P)ratios between 14 and 16,no matter how the soil N availability changed.Shifts in plant N:P ratios due to the increased plant N and P uptake might thus be a primary pathway of AMF altering plant community composition.Furthermore,we constructed a comprehensive picture of AMF’s role in N cycling,highlighting that AMF reduced N losses primarily by mitigating N leaching,while N_(2)O emissions played a marginal role.Arbuscular mycorrhizal fungi reduced N_(2)O emissions directly through the promotion of N_(2)O-consuming denitrifiers.The underlying mechanism for reducing N leaching is mainly the AMF-mediated improved nutrient uptake and AMF-associated microbial immobilization.Our results indicate that synergies between AMF and other soil microorganisms cannot be ignored in N cycling and that the integral role of AMF in N cycling terrestrial ecosystems can buffer the upcoming global changes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.31800369,32271686,U1904204)the State Scholarship Fund of Chinathe Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.182101510005)。
文摘Background:Nitrogen(N)deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake.However,the effect of N deposition on the flexibility of carbon(C),N,and phosphorus(P)in forest plant-soil-microbe systems remains unclear.Methods:We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant,soil and microbial biomass C,N and P nutrients and stoichiometry to N addition in different N intensity(050,50–100,>100 kg·ha^(-1)·year^(-1)of N),duration(0–5,>5 year),method(understory,canopy),and matter(ammonium N,nitrate N,organic N,mixed N).Results:N addition significantly increased plant N:P(leaf:14.98%,root:13.29%),plant C:P(leaf:6.8%,root:25.44%),soil N:P(13.94%),soil C:P(10.86%),microbial biomass N:P(23.58%),microbial biomass C:P(12.62%),but reduced plant C:N(leaf:6.49%,root:9.02%).Furthermore,plant C:N:P stoichiometry changed significantly under short-term N inputs,while soil and microorganisms changed drastically under high N addition.Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content,while understory N inputs altered more by influencing soil C and P content.Organic N significantly influenced plant and soil C:N and C:P,while ammonia N changed plant N:P.Plant C:P and soil C:N were strongly correlated with mean annual precipitation(MAT),and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth.Besides,N addition decoupled the correlations between soil microorganisms and the plant.Conclusions:N addition significantly increased the C:P and N:P in soil,plant,and microbial biomass,reducing plant C:N,and aggravated forest P limitations.Significantly,these impacts were contingent on climate types,soil layers,and N input forms.The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100101)a Major Special Science and Technology Project of Gansu Province(18ZD2FA009)the National Natural Science Foundation of China(NSFC)(31522013).
文摘Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which are very important in semi-arid mountain ecosystems.However,how different tree species affect soil nutrients and soil physicochemical properties after afforestation,and which is the best plantation species for improving soil fertility and water conservation functions remain largely unknown.Methods:This study investigated the soil nutrient contents of three different plantations(Larix principis-rupprechtii,Picea crassifolia,Pinus tabuliformis),soils and plant-soil feedbacks,as well as the interactions between soil physicochemical properties.Results:The results revealed that the leaves and litter layers strongly influenced soil nutrient availability through biogeochemical processes:P.tabuliformis had higher organic carbon,ratio of organic carbon to total nitrogen(C:N)and organic carbon to total phosphorus(C:P)in the leaves and litter layers than L.principis-rupprechtii or P.crassifolia,suggesting that higher C:N and C:P hindered litter decomposition.As a result,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved soil nutrients and clay components,compared with the P.tabuliformis plantation forest.Furthermore,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved the soil capacity,soil total porosity,and capillary porosity,decreased soil bulk density,and enhanced water storage capacity,compared with the P.tabuliformis plantation forest.The results of this study showed that,the strong link between plants and soil was tightly coupled to C:N and C:P,and there was a close correlation between soil particle size distribution and soil physicochemical properties.Conclusions:Therefore,our results recommend planting the L.principis-rupprechtii and P.crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions,especially in semi-arid regions mountain forest ecosystems.
基金This research was supported by the National Natural Science Foundation of China(41807335)the Shandong Provincial Natural Science Foundation,China(ZR2020MC040)+2 种基金the National Key Technology Research and Development Program of China(2019YFC0507602-2)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020434)the National Postdoctoral Program for Innovative Talents(BX201700279).
文摘Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.
基金supported by the National Key R&D Program of China (2016YFC0500706)
文摘Desert plants take on unique physiologically adaptive mechanisms in response to an adverse environment. In this study, we determined the concentrations of leaf nitrogen(N), phosphorus(P), and calcium(Ca) fraction for dominant species of Artemisia ordosica, A. frigida, Calligonum mongolicum, and Oxytropis aciphylla in the Alxa Desert and discussed seasonal changes of their leaf N:P ratio and Ca fraction. The results showed that, from May to September, the N:P ratios of A. ordosica and C. mongolicum gradually and significantly increased, while those of A. frigida, and O. aciphylla had an increase trend that was not significant; the physiologically active Ca of A. ordosica and A. frigida increased significantly,while that of C. mongolicum and O. aciphylla decreased significantly. The physiologically inert calcium of C. mongolicum increased extremely significantly, while that of others was not significant. There was a significantly positive correlation between the N:P ratio and physiologically active Ca for A. ordosica, and the N:P ratio was significantly and negatively correlated with physiologically active Ca for O. aciphylla. These findings revealed that the physiological regulation mechanism was different for the plants either in earlier stage or later stage of plant-community succession.
基金supported by the National Key Research and Development Program of China (2016YFC0500706)
文摘Soil calcium carbonate(CaCO_3) has a strong solid phosphorus effect, and high content of CaCO_3 can significantly reduce the effectiveness of soil phosphorus. To reveal the limiting effect of soil CaCO_3 on the growth of plants on sand land and its mechanism of plant physiology, we performed pot experiments with a two-factor randomized block design and a three-factor orthogonal design for different soil CaCO_3 content treatments using Artemisia ordosica seedlings. In the experiments, we surveyed plant height, aboveground biomass, root length and root weight and analyzed N, P concentrations and RNA content of the seedlings, and discussed the relationships between relative growth rate(RGR) of the seedlings and N:P ratio as well as RNA. Results show that, the RGRs of plant height and above-ground biomass of the seedlings decreased significantly with the increase of soil CaCO_3 content, and those for root length and root weight decreased. The RGRs of plant height and above-ground biomass of the seedlings were significantly negatively correlated with leaf N:P ratios, but significantly positively correlated with leaf RNA content and leaf P concentrations. It can be seen that soil CaCO_3 is a stress factor for the growth of A. ordosica seedlings, and the growth response of the seedlings under the influence of soil CaCO_3 is in line with the Growth Rate Hypothesis.
基金supported in part by the National Basic Re-search Program of China (2009CB421303)supported by National Natural Science Foundation of China (30970546)
文摘To address how the ratios of nitrogen and phosphorus (N:P ratios) in soil affect plant growth, we performed a two-factor (soil available N:P ratios and plant density) randomized block pot experiment to examine the relationships between soil N:P ratios, and the N:P ratios and growth rate of Artemisia ordosica seedlings. Under moderate water stress and adequate nutrient status, both soil N:P and plant density influenced the N:P ratios and growth rates of A. ordosica. With the increase of soil N:P ratios, the growth rates of A. ordosica seedlings decreased significantly. With the increase of soil N:P ratios, N:P ratios in A. ordosica seedlings increased significantly. While the nitrogen concentrations in the plant increased slightly, the phosphorus concentrations significantly decreased. With the increase of plant density, the shoot N:P ratios and growth rates significantly decreased, which resulted from soil N:P ratios. Thus, soil N:P ratios influenced the N:P ratios in A. ordosica seedlings, and hence, influenced its growth. Our results suggest that, under adequate nutrient environment, soil N:P ratios can be a limiting factor for plant growth.
文摘Attitudes regarding traditional energy sources have shifted toward renewable resources. Specifically, short-rotation woody crop supply systems have become more prevalent for biomass and biofuel production. However, a number of factors such as environmental and inherent resource availability can limit tree production. Given the intensified demand for wood biomass production, forest and plantation management practices are focusing on increasing productivity. Fertilizer application, while generally one of the least expensive silvicultural tools, can become costly if application rates exceed nutrient uptake or demand of the trees especially if it does not result in additional biomass production. We investigated the effect of water and varying levels of nitrogen application (56, 112, and 224 kg·N·haǃ·yrǃ) on nutrient content, resorption efficiency and proficiency, N:P and the relationship with ANPP, as well as leaf- and canopy-level nutrient use efficiency of nitrogen, phosphorus, and potassium for Populus deltoides, Quercus pagoda, and Platanus occidentalis. P. deltoides and P. occidentalis reached their maximum nitrogen budget with the application of water suggesting old agricultural fields may have sufficient nutrient levels to sustain short-rotation woody crops negating the application of additional nitrogen for these two species. Additionally, for P. deltoides and Q. pagoda application of nitrogen appeared to increase the uptake of phosphorus however, resorption efficiency for these two species were more similar to studies conducted on nutrient poor sites. Nutrient resorption proficiency for all three nutrients and all three species were at levels below the highest rates of nitrogen application. These findings suggest maximum biomass production may not necessarily be tied to maximum nutrient application.
基金This research was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA2003010302)the National Natural Science Foundation of China(32171514)the State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(E1510107).
文摘The purpose of the current study was to investigate the eco-physiological responses,in terms of growth and C:N:P stoichiometry of plants cultured from dimorphic seeds of a single-cell C4 annual Suaeda aralocaspica(Bunge)Freitag and Schütze under elevated CO_(2).A climatic chamber experiment was conducted to examine the effects of ambient(720μg/L)and CO_(2)-enriched(1440μg/L)treatments on these responses in S.aralocaspica at vegetative and reproductive stages in 2012.Result showed that elevated CO_(2) significantly increased shoot dry weight,but decreased N:P ratio at both growth stages.Plants grown from dimorphic seeds did not exhibit significant differences in growth and C:N:P stoichiometric characteristics.The transition from vegetation to reproductive stage significantly increased shoot:root ratio,N and P contents,but decreased C:N,C:P and N:P ratios,and did not affect shoot dry weight.Moreover,our results indicate that the changes in N:P and C:N ratios between ambient and elevated CO_(2) are mainly caused by the decrease of N content under elevated CO_(2).These results provide an insight into nutritional metabolism of single-cell C4 plants under climate change.
基金supported by the National Natural Science Foundation of China(Nos.32101304 and 32160281)the Key Laboratory Project,Xinjiang,China(No.2021D04006)+1 种基金China Postdoctoral Science Foundation(No.2021M692707)supported by the Swiss National Science Foundation(No.31003A-166079)。
文摘Nitrogen(N)is one of the most limited nutrients of terrestrial ecosystems,whose losses are prevented in tightly coupled cycles in finely tuned systems.Global change-induced N enrichment through atmospheric deposition and application of vast amounts of fertilizer are now challenging the terrestrial N cycle.Arbuscular mycorrhizal fungi(AMF)are known drivers of plant-soil nutrient fluxes,but a comprehensive assessment of AMF involvement in N cycling under global change is still lacking.Here,we simulated N enrichment by fertilization(low/high)in experimental grassland microcosms under greenhouse conditions in the presence or absence of AMF and continuously monitored different N pathways over nine months.We found that high N enrichment by fertilization decreased the relative abundance of legumes and the plant species dominating the plant community changed from grasses to forbs in the presence of AMF,based on aboveground biomass.The presence of AMF always maintained plant N:phosphorus(P)ratios between 14 and 16,no matter how the soil N availability changed.Shifts in plant N:P ratios due to the increased plant N and P uptake might thus be a primary pathway of AMF altering plant community composition.Furthermore,we constructed a comprehensive picture of AMF’s role in N cycling,highlighting that AMF reduced N losses primarily by mitigating N leaching,while N_(2)O emissions played a marginal role.Arbuscular mycorrhizal fungi reduced N_(2)O emissions directly through the promotion of N_(2)O-consuming denitrifiers.The underlying mechanism for reducing N leaching is mainly the AMF-mediated improved nutrient uptake and AMF-associated microbial immobilization.Our results indicate that synergies between AMF and other soil microorganisms cannot be ignored in N cycling and that the integral role of AMF in N cycling terrestrial ecosystems can buffer the upcoming global changes.