In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. I...In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.展开更多
M.Newman[2]提出以下几个未解决的问题:(1)在 F_2上,确定全体 n 阶平方次幂矩阵的数目。(2)在整数环上,对任意的 n,确定最小的整正数 M(n),使任一 n 阶方阵都可表示成 M(n)个平方次幂矩阵之和。(3)把以上问题推广到高次幂。本文分别讨...M.Newman[2]提出以下几个未解决的问题:(1)在 F_2上,确定全体 n 阶平方次幂矩阵的数目。(2)在整数环上,对任意的 n,确定最小的整正数 M(n),使任一 n 阶方阵都可表示成 M(n)个平方次幂矩阵之和。(3)把以上问题推广到高次幂。本文分别讨论上述问题,得到如下结果:(1)给出全体平方矩阵计数公式。(2)对任一整数矩阵,若它可以有理标准化,则可表示成4个平方次矩阵之和。这与数论中著名的 Lagrange 定理[4]相吻合。(3)在域 F_p 上,任一 n 阶方阵都可表示2个 p 次幂矩阵之和。展开更多
文摘In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.
文摘M.Newman[2]提出以下几个未解决的问题:(1)在 F_2上,确定全体 n 阶平方次幂矩阵的数目。(2)在整数环上,对任意的 n,确定最小的整正数 M(n),使任一 n 阶方阵都可表示成 M(n)个平方次幂矩阵之和。(3)把以上问题推广到高次幂。本文分别讨论上述问题,得到如下结果:(1)给出全体平方矩阵计数公式。(2)对任一整数矩阵,若它可以有理标准化,则可表示成4个平方次矩阵之和。这与数论中著名的 Lagrange 定理[4]相吻合。(3)在域 F_p 上,任一 n 阶方阵都可表示2个 p 次幂矩阵之和。