期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries 被引量:1
1
作者 Qiang Han Lele Cai +3 位作者 Zhaofeng Yang Yanjie Hu Hao Jiang Chunzhong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期556-564,共9页
Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in uns... Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes. 展开更多
关键词 Single-crystalline cathode ni-rich oxides Pre-lithiation Li-ion batteries Surface modification
下载PDF
Suppressed Internal Intrinsic Stress Engineering in High-Performance Ni-Rich Cathode Via Multi layered In Situ Coating Structure 被引量:1
2
作者 Jiachao Yang Yunjiao Li +3 位作者 Xiaoming Xi Junchao Zheng Jian Yu Zhenjiang He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期58-66,共9页
LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni... LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material. 展开更多
关键词 compensating doped in situ coating multilayer material ni-rich cathode materials suppressed internal strain
下载PDF
Tuning Li/Ni mixing by reactive coating to boost the stability of cobalt-free Ni-rich cathode 被引量:1
3
作者 Fanghui Du Xitong Zhang +7 位作者 Yingchao Wang Lei Ding Pengfang Zhang Lingyang Liu Dong Wang Jianzong Man Yuling Chen Yunwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期20-29,I0002,共11页
Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective s... Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials. 展开更多
关键词 Cobalt-free ni-rich cathode Li/Ni mixing Al doping Li_(3)PO_(4) coating Lithium-ion batteries
下载PDF
Constructing a stable interface on Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode via lactic acid-assisted engineering strategy
4
作者 Weijian Tang Chengzhi Hu +4 位作者 AFei Li Xiaoqin Huang Zhangxian Chen Jianhui Su Weixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期412-422,I0010,共12页
Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high... Ni-rich layered oxides are potential cathode materials for next-generation high energy density Li-ion batteries due to their high capacity and low cost.However,the inherently unstable surface properties,including high levels of residual Li compounds,dissolution of transition metal cations,and parasitic side reactions,have not been effectively addressed,leading to significant degradation in their electrochemical performance.In this study,we propose a simple and effective lactic acid-assisted interface engineering strategy to regulate the surface chemistry and properties of Ni-rich LiNi_(0.8)Co_(0.1)Mr_(0.1)O_(2) cathode.This novel surface treatment method successfully eliminates surface residual Li compounds,inhibits structural collapse,and mitigates cathode-electrolyte interface film growth.As a result,the lactic acidtreated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) achieved a remarkable capacity retention of 91.7% after 100 cycles at 0.5 C(25℃) and outstanding rate capability of 149.5 mA h g^(-1) at 10 C,significantly outperforming the pristine material.Furthermore,a pouch-type full cell incorporating the modified LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode demonstrates impressive long-term cycle life,retaining 81.5% of its capacity after 500 cycles at 1 C.More importantly,the thermal stability of the modified cathode is also dramatically improved.This study offers a valuable surface modification strategy for enhancing the overall performance of Ni-rich cathode materials. 展开更多
关键词 Residual Li Lactic acid Surface modification Carbon coating Layered cathode ni-rich
下载PDF
Thermodynamics-directed bulk/grain-boundary engineering for superior electrochemical durability of Ni-rich cathode
5
作者 Kangyu Zou Mingzhu jiang +5 位作者 Tianxiang Ning Lei Tan Junchao Zheng Jiexi Wang Xiaobo Ji Lingjun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期321-331,I0006,共12页
Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the infe... Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes. 展开更多
关键词 ni-rich layered cathode Dual-modification Grain boundary coating Bulk doping Thermodynamic perspective
下载PDF
Enhancing thermodynamic stability of single-crystal Ni-rich cathode material via a synergistic dual-substitution strategy
6
作者 Jixue Shen Hui Li +6 位作者 Haoyu Qi Zhan Lin Zeheng Li Chuanbo Zheng Weitong Du Hao Chen Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期428-436,I0010,共10页
Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ... Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization. 展开更多
关键词 ni-rich cathode Single crystalline Dual-substitution strategy High-temperature cathode Li-ion batteries
下载PDF
Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes
7
作者 Jixue Shen Bao Zhang +4 位作者 Changwang Hao Xiao Li Zhiming Xiao Xinyou He Xing Ou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1045-1057,共13页
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic... Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances. 展开更多
关键词 Li/Ni antisite defect Dynamic characteristic HIGH-VOLTAGE SINGLE-CRYSTAL ni-rich Co-free cathodes Lithium-ion batteries
下载PDF
Alleviating the anisotropic microstructural change and boosting the lithium ions diffusion by grain orientation regulation for Ni-rich cathode materials
8
作者 Xinyou He Shilin Su +3 位作者 Bao Zhang Zhiming Xiao Zibo Zhang Xing Ou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期213-222,I0005,共11页
Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in t... Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes. 展开更多
关键词 ni-rich cathode Grain orientation regulation Anisotropic microstructural change Precursor engineering Li~+-ions diffusion
下载PDF
Mitigating kinetic hindrance of single-crystal Ni-rich cathodes through morphology modulation,nickel reduction,and lithium vacancy generation achieved by terbium doping
9
作者 Jiyuan Jian Shuang Lin +13 位作者 Guokang Han Xianglian Zhan Yinghui Shan Rang Xiao Ziwei Liu Dandan Sun Xin Zhang Qingjie Zhou Geping Yin Hua Huo Yulin Ma Pengjian Zuo Xinqun Cheng Chunyu Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期566-574,I0012,共10页
Single crystallization has proven to be effective in enhancing the capacity and stability of Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(SNCM)cathode materials,particularly at high cut-off voltages.Nevertheless,the synthesi... Single crystallization has proven to be effective in enhancing the capacity and stability of Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(SNCM)cathode materials,particularly at high cut-off voltages.Nevertheless,the synthesis of high-quality single-crystal particles remains challenging because of severe particle agglomeration and irregular morphologies.Moreover,the limited kinetics of solid-phase Li^(+)diffusion pose a significant concern because of the extended diffusion path in large single-crystal particles.To address these challenges,we developed a Tb-doped single-crystal LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(SNCM-Tb)cathode material using a straightforward mixed molten salt sintering process.The Tb-doped Ni-rich single crystals presented a quasi-spherical morphology,which is markedly different from those reported in previous studies.Tb^(4+)oping significantly enhanced the dynamic transport of Li^(+)ions in the layered oxide phase by reducing the Ni valence state and creating Li vacancies.A SNCM-Tb material with 1 at%Tb doping shows a Li^(+)diffusion coefficient up to more than 9 times higher than pristine SNCM in the non-diluted state.In situ X-ray diffraction analysis demonstrated a significantly facilitated H1-H2-H3 phase transition in the SNCM-Tb materials,thereby enhancing their rate capacity and structural stability.SNCM-Tb exhibited a reversible capacity of 186.9 mA h g^(-1)at 5 C,retaining 94.6%capacity after 100 cycles at 0.5 C under a 4,5 V cut-off.Our study elucidates the Tb^(4+)doping mechanisms and proposes a scalable method for enhancing the performance of single-crystal Ni-rich NCM materials. 展开更多
关键词 Lithium-ion batteries ni-rich layered oxides Single crystals Tb^(4+) doping Li^(+) diffusion kinetics
下载PDF
Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries 被引量:3
10
作者 Gwonsik Nam Jaeseong Hwang +4 位作者 Donghun Kang Sieon Oh Sujong Chae Moonsu Yoon Minseong Ko 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期562-568,共7页
The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested... The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested a simple but advanced solid-state method that ensures both uniform transition metal distribution and single-crystalline morphology for Ni-rich cathode synthesis without sophisticated coprecipitation.Pelletization-assisted mechanical densification(PAMD)process on solid-state precursor mixture enables the dynamic mass transfer through the increased solid-solid contact area which facilitates the grain growth during sintering process,readily forming micro-sized single-crystalline particle.Furthermore,the improved chemical reactivity by a combination of capillary effect and vacancyassisted diffusion provides homogeneous element distribution within each primary particle.As a result,single-crystalline Ni-rich cathode with PAMD process has eliminated a potential evolution of intergranular cracking,thus achieving superior energy retention capability of 85%over 150 cycles compared to polycrystalline Ni-rich particle even after high-pressure calendering process(corresponding to electrode density of~3.6 g cm^(-3))and high cut-off voltage cycling.This work provides a concrete perspective on developing facile synthetic route of micron-sized single-crystalline Ni-rich cathode materials for high energy density lithium-ion batteries(LIBs). 展开更多
关键词 Lithium-ion batteries ni-rich cathode materials Mechanical densification Solid-state synthesis
下载PDF
Deciphering the degradation discrepancy in Ni-rich cathodes with a diverse proportion of[003]crystallographic textures 被引量:3
11
作者 Lang Qiu Mengke Zhang +13 位作者 Yang Song Zhenguo Wu Yan-Fang Zhu Jun Zhang Dong Wang Hai-Yan Hu Hong-Wei Li Hang-Rui Liu Xin-Bei Jia Jian Peng Shuangqiang Chen Zuguang Yang Yao Xiao Xiaodong Guo 《Carbon Energy》 SCIE CSCD 2023年第7期15-26,共12页
The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with di... The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with different exposed ratios of[003]in structural attenuation has not been clarified.Herein,we have unraveled comprehensively the structural decay difference for Ni-rich cathodes’primary particles with the different percentages of exposed[003]by regulating the precursor coprecipitation process.The findings based on structural characterization,first-principles calculations,finite element analysis,and electrochemical test reveal that the length and width of particles represent[110]and[003]directions,respectively,and show that cathode particles with a higher[110]/[003]ratio can effectively inhibit structure degradation and intergranular/intragranular crack formation owing to the low oxygen vacancy formation energy on(003)planes and the small local stress on secondary/primary particles.This study may provide guidance for the structural design of layered cathodes. 展开更多
关键词 cracks crystal plane ni-rich cathodes oxygen vacancy structure degradation
下载PDF
Insight into the effect of thick graphite electrodes towards high-performance cylindrical Ni-rich NCA90 Li-ion batteries 被引量:1
12
作者 Nattanon Joraleechanchai Thitiphum Sangsanit +2 位作者 Kan Homlamai Purin Krapong Montree Sawangphruk 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期322-333,I0009,共13页
This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-t... This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-tortuosity electrodes had better graphite utilization.The in-plane tortuosities of the graphite anode electrodes examined were 1.70,1.94,2.05,and 2.18,while their corresponding through-plane tortuosities were 4.74,6.94,8.19,and 9.80.In-operando X-ray diffraction and differential electrochemical mass spectrometry were employed to investigate the charge storage mechanism and gas evolution.The study revealed that while graphite electrode tortuosity impacted the amount of Li present in the lithiated graphite phase due to diffusion constraints,it did not affect gas generation.The Li-ion utilization in low-tortuosity electrodes was higher than that in high-tortuosity electrodes because of solid-diffusion limitations.Additionally,the galvanostatic intermittent titration technique(GITT) was employed to investigate a lithium-ion diffusion coefficient.Our results indicate that the lithium-ion diffusion coefficient exhibits a significant difference only during LiC_(6) phase transition.We also observed that the use of a lower tortuosity electrode leads to improved lithium-ion insertion.Consequently,graphite utilization is influenced by the porous electrode design.Safety tests adhering to UN38.3 guidelines verified battery safety.The study demonstrated the practical application of optimized NCA90 LIB cells with diverse graphite electrode tortuosities in a high-performance Lamborghini GoKart,paving the way for further advancements in Ni-rich LIB technology. 展开更多
关键词 Li-ion batteries TORTUOSITY ni-rich NCA90 cathode On-line gas detection In-operando XRD
下载PDF
Highly improved cyclic stability of Ni-rich/Li batteries with succinic anhydride as electrolyte additive and underlying mechanism
13
作者 Shu Yang Guanjie Li +7 位作者 Xiaoyan Lin Changyong Mo Xianggui Zhou Lijiao Quan Kuan Zhou Suli Li Hai Wang Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期80-90,I0003,共12页
Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a ne... Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a new strategy to address this issue.It is found that the cyclic stability of Ni-rich/Li battery can be significantly improved by using succinic anhydride(SA) as an electrolyte additive.Specifically,the capacity retention of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/Li cell is improved from 14% to 83% after 200cycles at 1 C between 3.0 and 4.35 V by applying 5% SA.The underlying mechanism of SA contribution is understood by comparing the effects of malic anhydride(MA) and citraconic anhydride(CA), both of which share a similar molecular structure to SA but show different effects.On anode side,SA can but MA and CA cannot form a protective solid electrolyte interphase(SEI) on Li anode.On cathode side,three anhydrides can suppress the formation of hydrogen fluoride from electrolyte oxidation decomposition,but SA behaves best.Typically,MA shows adverse effects on the interface stability of Li anode and NCM811 cathode,which originates from its high acidity.Though the acidity of MA can be mitigated by substituting a methyl for one H atom at its C=C bond,the substituent CA cannot compete with SA in cyclic stability improvement of the cell,because the SEI resulting from CA is not as robust as that from SA,which is related to the binding energy of the SEI components.This understanding reveals the importance of the electrolyte acidity on the Ni-rich cathode and the robustness of the SEI on Li anode,which is helpful for rationally designing new electrolyte additives to further improve the cyclic stability of high-energydensity Ni-rich/Li batteries. 展开更多
关键词 Lithium-metal battery ni-rich cathode Electrolyte additives Succinic Anhydride Cyclic stability
下载PDF
Multiscale strain alleviation of Ni-rich cathode guided by in situ environmental transmission electron microscopy during the solid-state synthesis
14
作者 Fengyu Zhang Yunna Guo +14 位作者 Chenxi Li Tiening Tan Xuedong Zhang Jun Zhao Ping Qiu Hongbing Zhang Zhaoyu Rong Dingding Zhu Lei Deng Zhangran Ye Zhixuan Yu Peng Jia Xiang Liu Jianyu Huang Liqiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期467-475,共9页
Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density.However,the chemomechanical breakdown and capacity degradation associated with the anisotrop... Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density.However,the chemomechanical breakdown and capacity degradation associated with the anisotropic lattice evolution during lithiation/delithiation hinders its practical application.Herein,by utilizing the in situ environmental transmission electron microscopy(ETEM),we provide a real time nanoscale characterization of high temperature solid-state synthesis of LiNi_(0.8)CO_(0.1)Mn_(0.1)O_(2)(NCM811) cathode,and unprecedentedly reveal the strain/stress formation and morphological evolution mechanism of primary/second ary particles,as well as their influence on electrochemical performance.We show that stress inhomogeneity during solid-state synthesis will lead to both primary/secondary particle pulverization and new grain boundary initiation,which are detrimental to cathode cycling stability and rate performance.Aiming to alleviate this multiscale strain during solid-state synthesis,we introduced a calcination scheme that effectively relieves the stress during the synthesis,thus mitigating the primary/secondary particle crack and the detrimental grain boundaries formation,which in turn improves the cathode structural integrity and Li-ion transport kinetics for long-life and high-rate electrochemical performance.This work remarkably advances the fundamental understanding on mechanochemical properties of transition metal oxide cathode with solid-state synthesis and provides a unified guide for optimization the Ni-rich oxide cathode. 展开更多
关键词 ni-rich cathode In situ ETEM Solid-state synthesis Multiscale strain alleviation
下载PDF
Unveiling the parasitic-reaction-driven surface reconstruction in Ni-rich cathode and the electrochemical role of Li_(2)CO_(3)
15
作者 Jiyu Cai Zhenzhen Yang +18 位作者 Xinwei Zhou Bingning Wang Ana Suzana Jianming Bai Chen Liao Yuzi Liu Yanbin Chen Shunlin Song Xuequan Zhang Li Wang Xiangming He Xiangbo Meng Niloofar Karami Baasit Ali Shaik Sulaiman Natasha A.Chernova Shailesh Upreti Brad Prevel Feng Wang Zonghai Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期126-136,I0006,共12页
Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cat... Nickel-rich transition-metal oxides are widely regarded as promising cathode materials for high-energydensity lithium-ion batteries for emerging electric vehicles. However, achieving high energy density in Ni-rich cathodes is accompanied by substantial safety and cycle-life obstacles. The major issues of Ni-rich cathodes at high working potentials are originated from the unstable cathode-electrolyte interface, while the underlying mechanism of parasitic reactions towards surface reconstructions of cathode materials is not well understood. In this work, we controlled the Li_(2)CO_(3) impurity content on LiNi_(0.83)Mn_(0.1)Co_(0.07)O_(2) cathodes using air, tank-air, and O_(2) synthesis environments. Home-built high-precision leakage current and on-line electrochemical mass spectroscopy experiments verify that Li_(2)CO_(3) impurity is a significant promoter of parasitic reactions on Ni-rich cathodes. The rate of parasitic reactions is strongly correlated to Li_(2)CO_(3) content and severe performance deterioration of Ni83 cathodes.The post-mortem characterizations via high-resolution transition electron microscope and X-ray photoelectron spectroscopy depth profiles reveal that parasitic reactions promote more Ni reduction and O deficiency and even rock-salt phase transformation at the surface of cathode materials. Our observation suggests that surface reconstructions have a strong affiliation to parasitic reactions that create chemically acidic environment to etch away the lattice oxygen and offer the electrical charge to reduce the valence state of transition metal. Thus, this study advances our understanding on surface reconstructions of Nirich cathodes and prepares us for searching for rational strategies. 展开更多
关键词 ni-rich cathodes Surface reconstructions Phase transformation Parasitic reactions Li_(2)CO_(3)
下载PDF
The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries 被引量:10
16
作者 Daozhong Hu Yuefeng Su +7 位作者 Lai Chen Ning Li Liying Bao Yun Lu Qiyu Zhang Jing Wang Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期1-8,共8页
Ni-rich cathode materials show great potential of applying in high-energy lithium ion batteries,but their inferior cycling stability hinders this process.Study on the electrode/electrolyte interfacial reaction is indi... Ni-rich cathode materials show great potential of applying in high-energy lithium ion batteries,but their inferior cycling stability hinders this process.Study on the electrode/electrolyte interfacial reaction is indispensable to understand the capacity failure mechanism of Ni-rich cathode materials and further address this issue.This work demonstrates the domain size effects on interfacial side reactions firstly,and further analyzes the inherent mechanism of side reaction induced capacity decay through comparing the interfacial behaviors before and after MgO coating.It has been determined that LiF deposition caused thicker SEI films may not increase the surface film resistance,while HF erosion induced surface phase transition will increase the charge transfer resistance,and the later plays the dominant factor to declined capacity of Ni-rich cathode materials.This work suggests strategies to suppress the capacity decay of layered cathode materials and provides a guidance for the domain size control to match the various applications under different current rates. 展开更多
关键词 Lithium-ion batteries ni-rich cathode materials LiF deposition HF erosion Failure mechanism
下载PDF
Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification 被引量:2
17
作者 Ying-De Huang Han-Xin Wei +11 位作者 Pei-Yao Li Yu-Hong Luo Qing Wen Ding-Hao Le Zhen-Jiang He Hai-Yan Wang You-Gen Tang Cheng Yan Jing Mao Ke-Hua Dai Xia-Hui Zhang Jun-Chao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期301-309,I0008,共10页
High-nickel single-crystal layered oxide material has become the most promising cathode material for electric vehicle power battery due to its high energy density.However,this material still suffers from structural de... High-nickel single-crystal layered oxide material has become the most promising cathode material for electric vehicle power battery due to its high energy density.However,this material still suffers from structural degradation during cycling and especially the severe interfacial reactions at elevated temperatures that exacerbate irreversible capacity loss.Here,a simple strategy was used to construct a dualfunction Li_(1.5)Al_(0.5)Ge_(1.5)P_(3)O_(12)(LAGP)protective layer on the surface of the high-nickel single-crystal(SC)cathode material,leading to SC@LAGP material.The strong Al-O bonding effectively inhibits the release of lattice oxygen(O)at elevated temperatures,which is supported by the positive formation energy of O vacancy from first-principal calculations.Besides,theoretical calculations demonstrate that the appropriate amount of Al doping accelerates the electron and Li^(+)transport,and thus reduces the kinetic barriers.In addition,the LAGP protective layer alleviates the stress accumulation during cycling and effectively reduces the erosion of materials from the electrolyte decomposition at elevated temperatures.The obtained SC@LAGP cathode material demonstrates much enhanced cycling stability even at high voltage(4.6 V)and elevated temperature(55℃),with a high capacity retention of 91.3%after 100 cycles.This work reports a simple dual-function coating strategy that simultaneously stabilizes the structure and interface of the single-crystal cathode material,which can be applied to design other cathode materials. 展开更多
关键词 Lithium-ion battery ni-rich cathode Dual-function coating SINGLE-CRYSTALLINE Elevated temperature
下载PDF
Improving electrochemical performance of Ni-rich layered oxide cathodes via one-step dual modification strategy 被引量:1
18
作者 Yuan-lin CAO Xiu-kang YANG +9 位作者 Lu WANG Ling XIAO Ni FU Li ZOU Wen-bo MA Zhe-ting LIU Xiao-qin WANG Li LIU Hong-bo SHU Xian-you WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3663-3678,共16页
A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating ... A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating can regulate the interface and facilitate the diffusion of Li-ions.Simultaneously,the stronger Nb—O bond can effectively suppress Li^(+)/Ni^(2+) cation mixing and strengthen the stability of crystal structure,which helps to mitigate the anisotropic variations of lattice parameters during Li^(+) de/intercalation.The results showed that the dual-modified materials exhibited good structural stability and distinguished electrochemical performance.The optimal NCM-Nb2 sample showed an excellent capacity retention of 90.78%after 100 cycles at 1C rate between 2.7 and 4.3 V,while only 67.90%for the pristine one.Meanwhile,it displayed a superior rate capability of 149.1 mA·h/g at the 10C rate.These results highlight the feasibility of one-step dual modification strategy to synchronously improve the electrochemical performance of Ni-rich layered oxide cathodes. 展开更多
关键词 ni-rich cathodes niobium one-step strategy dual modification structural stability electrochemical performance
下载PDF
Mg,Ti-base surface integrated layer and bulk doping to suppress lattice oxygen evolution of Ni-rich cathode material at a high cut-off voltage 被引量:1
19
作者 Fan Peng Youqi Chu +7 位作者 Yu Li Qichang Pan Guangchang Yang Lixuan Zhang Sijiang Hu Fenghua Zheng Hongqiang Wang Qingyu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期434-444,I0012,共12页
The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high... The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high-voltage cycling,which is related to the phase transformation and the surface sides reactions caused by the lattice oxygen evolution.Here,the simultaneous construction of a Mg,Ti-based surface integrated layer and bulk doping through Mg,Ti surface treatment could suppress the lattice oxygen evolution of Nirich material at deep charging.More importantly,Mg and Ti are co-doped into the particles surface to form an Mg_(2)TiO_(4) and Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with Mg and Ti vacancies.In the constructed surface integrated layer,the reverse electric field in the Mg_(2)TiO_(4) effectively suppressed the outward migration of the lattice oxygen anions,while Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with high electronic conductivity and good lithium ion conductor could effectively maintained the stability of the reaction interface during highvoltage cycling.Meanwhile,bulk Mg and Ti co-doping can mitigate the migration of Ni ions in the bulk to keep the stability of transition metal–oxygen(M-O)bond at deep charging.As a result,the NCM@MTP cathode shows excellent long cycle stability at high-voltage charging,which keep high capacity retention of 89.3%and 84.3%at 1 C after 200 and 100 cycles under room and elevated temperature of 25 and 55°C,respectively.This work provides new insights for manipulating the surface chemistry of electrode materials to suppress the lattice oxygen evolution at high charging voltage. 展开更多
关键词 ni-rich layered oxide Mg Ti-base surface integrated layer Bulk doping Lattice oxygen evolution
下载PDF
UiO-66 type metal-organic framework as a multifunctional additive to enhance the interfacial stability of Ni-rich layered cathode material 被引量:1
20
作者 Ruixue Xue Na Liu +6 位作者 Liying Bao Lai Chen Yuefeng Su Yun Lu Jinyang Dong Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期378-386,共9页
To effectively alleviate the surface structure degradation caused by electrolyte corrosion and transition metal(TM) dissolution for Ni-rich(Ni content > 0.6) cathode materials, porous Zirconium based metalorganic f... To effectively alleviate the surface structure degradation caused by electrolyte corrosion and transition metal(TM) dissolution for Ni-rich(Ni content > 0.6) cathode materials, porous Zirconium based metalorganic frameworks(Zr-MOFs, UiO-66) material is utilized herein as a positive electrode additive. UiO-66 owns tunable attachment sites and strong binding affinity, making itself an efficient defluorination agent to suppress the undesirable reactions caused by fluorine species. Besides, it can also relieve TMs dissolution and block the migration of TMs toward anode side since it’s a multifarious metal ions adsorbent,realizing both cathode and anode interface protection. Benefiting from these advantages, the UiO-66 assistant Ni-rich cathode achieves superior cycling stability. Particularly in full cell, the positive effects of this multifunctional additive are more pronounced than in the half-cell, that is after 400 cycles at 2 C,the capacity retention has doubled with the addition of UiO-66. More broadly, this unique application of functional additive provides new insight into the degradation mechanism of layered cathode materials and offers a new avenue to develop high-energy density batteries. 展开更多
关键词 ni-rich layered cathode Metal-organic framework additive Electrolyte corrosion Transition metal dissolution Interfacial stability
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部