针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点...针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点概率偏置采样策略与目标偏向扩展策略,可使目标节点在随机采样时成为采样点。在路径点扩展过程中,使非目标采样点的扩展结点位置偏向于目标点的方向,从而增强算法在随机采样与扩展过程中的目标搜索能力。为解决水下路径规划过程中存在过多无效搜索空间的问题,在随机采样过程中引入启发式采样策略,构建包含所有初始路径的采样空间子集,减小采样空间范围,从而提高算法的空间搜索效率。针对AUV在水下环境中抗洋流扰动能力不足的问题,采用速度矢量合成法,使AUV速度矢量与洋流速度矢量合成后指向期望路径的方向,从而抵消水流的影响。在山峰地形中叠加多个Lamb涡流模拟水下流场环境,进行多次仿真实验。实验结果表明:改进启发式RRT算法解决了采样过程中随机性问题,显著缩小了搜索空间,兼顾了路径的安全性与平滑性,并使AUV具有良好的抗洋流扰动能力。展开更多
为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT...为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT*算法融合,提出一种自适应步长增长策略的改进APF-Informed-RRT*算法。首先在选择新节点时,考虑到障碍物和目标点的影响,提出一种自适应步长增长策略来解决采样的盲目性;其次采用三次B样条对拐点处进行平滑处理;最后分别采用RRT*算法、Informed-RRT*算法和改进APF-Informed-RRT*算法在两种环境中进行仿真实验。结果表明,改进APF-Informed-RRT*算法相较于RRT*算法和Informed-RRT*算法,在运行时间、迭代次数以及路径平滑上都得到提升。展开更多
为了解决冗余机械臂在复杂环境中的路径规划和避障问题,提出一种基于改进快速扩展随机树(Rapidly Exploring Random Tree,RRT)算法与三维碰撞检测的高效路径规划方法。利用改进算法生成无碰撞的平滑路径,对机器人姿态进行求解,并通过碰...为了解决冗余机械臂在复杂环境中的路径规划和避障问题,提出一种基于改进快速扩展随机树(Rapidly Exploring Random Tree,RRT)算法与三维碰撞检测的高效路径规划方法。利用改进算法生成无碰撞的平滑路径,对机器人姿态进行求解,并通过碰撞检测验证路径的可行性。改进的RRT算法采用基于概率的控制机制来优化随机点生成策略,结合路径平滑算法减少路径节点,同时引入三维碰撞检测技术以确保路径的有效性和安全性。试验结果表明:该方法在二维和三维复杂场景中均能显著提升路径规划效率,成功率和路径平滑性明显优于传统算法。研究成果可为冗余机械臂在复杂环境中的路径规划提供高效、可靠的解决方案,有助于进一步提升其在实际应用中的稳定性和适用性。展开更多
针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法...针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。展开更多
文摘针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点概率偏置采样策略与目标偏向扩展策略,可使目标节点在随机采样时成为采样点。在路径点扩展过程中,使非目标采样点的扩展结点位置偏向于目标点的方向,从而增强算法在随机采样与扩展过程中的目标搜索能力。为解决水下路径规划过程中存在过多无效搜索空间的问题,在随机采样过程中引入启发式采样策略,构建包含所有初始路径的采样空间子集,减小采样空间范围,从而提高算法的空间搜索效率。针对AUV在水下环境中抗洋流扰动能力不足的问题,采用速度矢量合成法,使AUV速度矢量与洋流速度矢量合成后指向期望路径的方向,从而抵消水流的影响。在山峰地形中叠加多个Lamb涡流模拟水下流场环境,进行多次仿真实验。实验结果表明:改进启发式RRT算法解决了采样过程中随机性问题,显著缩小了搜索空间,兼顾了路径的安全性与平滑性,并使AUV具有良好的抗洋流扰动能力。
文摘为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT*算法融合,提出一种自适应步长增长策略的改进APF-Informed-RRT*算法。首先在选择新节点时,考虑到障碍物和目标点的影响,提出一种自适应步长增长策略来解决采样的盲目性;其次采用三次B样条对拐点处进行平滑处理;最后分别采用RRT*算法、Informed-RRT*算法和改进APF-Informed-RRT*算法在两种环境中进行仿真实验。结果表明,改进APF-Informed-RRT*算法相较于RRT*算法和Informed-RRT*算法,在运行时间、迭代次数以及路径平滑上都得到提升。
文摘为了解决冗余机械臂在复杂环境中的路径规划和避障问题,提出一种基于改进快速扩展随机树(Rapidly Exploring Random Tree,RRT)算法与三维碰撞检测的高效路径规划方法。利用改进算法生成无碰撞的平滑路径,对机器人姿态进行求解,并通过碰撞检测验证路径的可行性。改进的RRT算法采用基于概率的控制机制来优化随机点生成策略,结合路径平滑算法减少路径节点,同时引入三维碰撞检测技术以确保路径的有效性和安全性。试验结果表明:该方法在二维和三维复杂场景中均能显著提升路径规划效率,成功率和路径平滑性明显优于传统算法。研究成果可为冗余机械臂在复杂环境中的路径规划提供高效、可靠的解决方案,有助于进一步提升其在实际应用中的稳定性和适用性。
文摘针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。