Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha...A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions.展开更多
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl...Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).展开更多
Landslides induced by reservoir inundation are common in Southwest China,negatively influencing hydropower stations.TheWunonglong hydropower station dam was constructed in the upper reaches of the Lancang River,accord...Landslides induced by reservoir inundation are common in Southwest China,negatively influencing hydropower stations.TheWunonglong hydropower station dam was constructed in the upper reaches of the Lancang River,accordingly causing the water level at the Lajinshengu slope to increase by 30 m.A tension crack with a visible depth of 8 m was observed in the upper sector of the Lajinshengu slope after reservoir impoundment for 170 d.In the following days,numerous cracks appeared on the surface of the slope,and the maximum displacement of the slope reached 3.22 m.Then,a large-scale active deformation body within the Lajinshengu slope formed with an area of 2.62×10^(5)m^(2)and a volume of 1.65×10^(7)m^(3).Detailed field investigations,on-site monitoring,and centrifugal model tests were carried out to analyze the surface features,deformation characteristics,and failure mechanism of the Lajinshengu slope.The results show that the slope is an ancient landslide,divided into two parts(i.e.zone A and zone B)by the gully.Zone B is a traction landslide caused by the displacement of zone A.The longterm inundation weakens the soft rock at the slope foot,intensifying the toppling of bedrock and consequently triggering the sliding of the overburden in zone A.The failure mode of the Lajinshengu slope is a typical case of toppling-sliding failure,and the underlying rock toppling drives the overlying sliding.In addition,early identification methods for toppling deformation covered by overburdened soil were proposed based on monitoring data and deformation signs.展开更多
The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determin...The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found.展开更多
Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e...Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.展开更多
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a...Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.展开更多
In recent decades,the spatio-temporal patterns of China’s croplands have been reshaped by disturbances from anthropogenic activities,with complex changes in the topographic characteristics of croplands.Slope-climbing...In recent decades,the spatio-temporal patterns of China’s croplands have been reshaped by disturbances from anthropogenic activities,with complex changes in the topographic characteristics of croplands.Slope-climbing of croplands(SCCL)is an important issue that threatens sustainable agricultural development.While providing land with prominent location advantages,SCCL weakens the water and fertilizer retention capacity for cropland,intensifies various geological disasters,and adversely affects the ecological environment and food yield of these croplands.It is crucial to determine the spatio-temporal variation features and effects of SCCL in China to formulate more accurate cropland protection policies and to maintain food security;however,the current lack of relevant studies is detrimental for capturing trends in cropland resources and sustainable cropland use.In this study,we constructed a multi-scale slope spectrum for cropland and total terrain to explore the spatial differences and trends of SCCL from a three-dimensional view.We evaluated the natural and socioeconomic effects of SCCL in China from multiple perspectives.Results indicate that the proportion of cropland with slopes below 2°,5°,and 6°in China decreased by 0.43%,0.47%,and 0.50%from 1980 to 2020,respectively.SCCL became apparent during 1980-1990 and 2010-2020,especially over the recent decade.The cropland climbing index(CCI)and upper limited slope change(ULSC)to measure the spatio-temporal pattern of SCCL were 0.99%and 1.17°,respectively,during 2010-2020.At the agricultural regional scale,the SCCL was also concentrated in 1980-1990 and 2010-2020,and it is more pronounced in the southern areas.The proportion of provinces and prefecture-level cities with high-intensity SCCL during 1980-2020 were 87.10%and 49.73%,respectively.SCCL was comparatively more pronounced and broader from 2010 to 2020.During this period,17.84%of prefecture-level cities had no SCCL,and the average CCI for all prefecture-level cities peaked at 1.62%.In this study,we also evaluated the pros and cons of SCCL and provided targeted suggestions for decision makers and farmers to refine cropland protection policy systems and further develop the sustainable use of croplands.展开更多
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce...The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system.展开更多
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin...Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.展开更多
Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengine...Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengineered slope stability facilitated by vegetation. However, the coupling of these effects on the stability of vegetated slope has been ignored. The objective of this study is to investigate the hydro-mechanical impact of vegetation growth and spacing on the stability of bioengineered slopes based on the predictions of a calibrated numerical model against field measurements. The impact of vegetation is investigated, with specific attention given to different plant spacing and growth stages, utilizing Schefflera arboricola. In the context of rainfall, it was observed that younger vegetation demonstrated more effective matric suction retention and recovery up to 25 kPa compared to the aged vegetation. Vegetation was revealed to substantially enhance the factor of safety up to 0.3 compared to the bare slope. Plant growth and reducing plant spacing increased the impact of root systems on both hydraulic and mechanical stability, primarily attributable to the influence of root cohesion rather than transpiration rates. The results revealed that the mechanical contribution to the factor of safety enhancement was raised from one-third to two-thirds because of the vegetation-induced cohesion within the growing rooted zone.展开更多
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi...The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl...Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.展开更多
Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d...Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.展开更多
Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(includi...Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China.展开更多
Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w...Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema...The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.展开更多
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金supported by the National Natural Science Foundation of China(Grant No.41672295)the Major Systematic Project of Scientific and Technological Research and Development Plan of China Railway Corporation(Grant No.P2018G047)supported by a PhD fellowship from the China Scholarship Council.Roberto Tomás was partially funded by the Conselleria de Innovación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions.
文摘Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).
基金funding support from the National Nature Science Foundation of China(Grant Nos.42072303 and 42107172)the Key Research and Development Program of Sichuan Province,China(Grant No.2022YFN0023).
文摘Landslides induced by reservoir inundation are common in Southwest China,negatively influencing hydropower stations.TheWunonglong hydropower station dam was constructed in the upper reaches of the Lancang River,accordingly causing the water level at the Lajinshengu slope to increase by 30 m.A tension crack with a visible depth of 8 m was observed in the upper sector of the Lajinshengu slope after reservoir impoundment for 170 d.In the following days,numerous cracks appeared on the surface of the slope,and the maximum displacement of the slope reached 3.22 m.Then,a large-scale active deformation body within the Lajinshengu slope formed with an area of 2.62×10^(5)m^(2)and a volume of 1.65×10^(7)m^(3).Detailed field investigations,on-site monitoring,and centrifugal model tests were carried out to analyze the surface features,deformation characteristics,and failure mechanism of the Lajinshengu slope.The results show that the slope is an ancient landslide,divided into two parts(i.e.zone A and zone B)by the gully.Zone B is a traction landslide caused by the displacement of zone A.The longterm inundation weakens the soft rock at the slope foot,intensifying the toppling of bedrock and consequently triggering the sliding of the overburden in zone A.The failure mode of the Lajinshengu slope is a typical case of toppling-sliding failure,and the underlying rock toppling drives the overlying sliding.In addition,early identification methods for toppling deformation covered by overburdened soil were proposed based on monitoring data and deformation signs.
基金This research was funded by National Science,Research and Innovation Fund(NSRF),and King Mongkut’s University of Technology North Bangkok with Contract No.KMUTNBeFFe66e12.
文摘The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found.
基金funded by the Natural Science Foundation of Fujian Province(Grant No.2023J011133)。
文摘Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.
基金Project(52109132)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE270)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(JMDPC202204)supported by State Key Laboratory of Strata Intelligent Control,Green Mining Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and Technology,China。
文摘Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.
基金This research was supported in part by grants from the Natural Science Foundation of China(Grant No.42371258 and 42001187)The project was also supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes,Faculty of Geography,Yunnan Normal University(PGPEC2304).
文摘In recent decades,the spatio-temporal patterns of China’s croplands have been reshaped by disturbances from anthropogenic activities,with complex changes in the topographic characteristics of croplands.Slope-climbing of croplands(SCCL)is an important issue that threatens sustainable agricultural development.While providing land with prominent location advantages,SCCL weakens the water and fertilizer retention capacity for cropland,intensifies various geological disasters,and adversely affects the ecological environment and food yield of these croplands.It is crucial to determine the spatio-temporal variation features and effects of SCCL in China to formulate more accurate cropland protection policies and to maintain food security;however,the current lack of relevant studies is detrimental for capturing trends in cropland resources and sustainable cropland use.In this study,we constructed a multi-scale slope spectrum for cropland and total terrain to explore the spatial differences and trends of SCCL from a three-dimensional view.We evaluated the natural and socioeconomic effects of SCCL in China from multiple perspectives.Results indicate that the proportion of cropland with slopes below 2°,5°,and 6°in China decreased by 0.43%,0.47%,and 0.50%from 1980 to 2020,respectively.SCCL became apparent during 1980-1990 and 2010-2020,especially over the recent decade.The cropland climbing index(CCI)and upper limited slope change(ULSC)to measure the spatio-temporal pattern of SCCL were 0.99%and 1.17°,respectively,during 2010-2020.At the agricultural regional scale,the SCCL was also concentrated in 1980-1990 and 2010-2020,and it is more pronounced in the southern areas.The proportion of provinces and prefecture-level cities with high-intensity SCCL during 1980-2020 were 87.10%and 49.73%,respectively.SCCL was comparatively more pronounced and broader from 2010 to 2020.During this period,17.84%of prefecture-level cities had no SCCL,and the average CCI for all prefecture-level cities peaked at 1.62%.In this study,we also evaluated the pros and cons of SCCL and provided targeted suggestions for decision makers and farmers to refine cropland protection policy systems and further develop the sustainable use of croplands.
基金supported by the National Natural Science Foundation of China (No.51978588).
文摘The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system.
基金supported by the National Natural Science Foundation of China(Grant No.42162026)the Applied Basic Research Foundation of Yunnan Province(Grant No.202201AT070083).
文摘Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.
基金ort provided by Iran National Science Foundation for“Experimental study of the hydromechanical behavior of rooted soils in green stabilization of unsaturated slopes”by way of grant No.4000730by the Hong Kong Research Grants Council(no.16202422 and C6006-20G)is gratefully acknowledged.
文摘Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengineered slope stability facilitated by vegetation. However, the coupling of these effects on the stability of vegetated slope has been ignored. The objective of this study is to investigate the hydro-mechanical impact of vegetation growth and spacing on the stability of bioengineered slopes based on the predictions of a calibrated numerical model against field measurements. The impact of vegetation is investigated, with specific attention given to different plant spacing and growth stages, utilizing Schefflera arboricola. In the context of rainfall, it was observed that younger vegetation demonstrated more effective matric suction retention and recovery up to 25 kPa compared to the aged vegetation. Vegetation was revealed to substantially enhance the factor of safety up to 0.3 compared to the bare slope. Plant growth and reducing plant spacing increased the impact of root systems on both hydraulic and mechanical stability, primarily attributable to the influence of root cohesion rather than transpiration rates. The results revealed that the mechanical contribution to the factor of safety enhancement was raised from one-third to two-thirds because of the vegetation-induced cohesion within the growing rooted zone.
基金supported in part by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes(PGPEC2304)+1 种基金Yunnan Normal University,China.This study was also sponsored by the Scientific Research Project of Education Department of Hubei Province(Grant No.B2022262)the Philosophy and Social Sciences Research Project of Education Department of Hubei Province(Grant No.22G024).
文摘The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金The authors wish to thank National Key R&D Program of China(Grant No.2022YFC308100)the National Nature Science Foundation of China(Grant Nos.42107172 and 42072303)for financial support.
文摘Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.
基金supported by Central Guiding Local Science and Technology Development Special Fund Project(No.ZYYD2023B02)the National Natural Science Foundation of China(Nos.52078432 and 52168066)the Scientific Research Project of China Railway First Survey and Design Institute Group Co.(No.20-06).
文摘Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.
文摘Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(Grant Nos.42477142 and 42277154)the Project of Slope Safety Control and Disaster Prevention Technology Innovation team of“Youth Innovation Talent Introduction and Education Plan”of Shandong Colleges and Universities(Grant No.Lu Jiao Ke Han[2021]No.51)。
文摘Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金supported by the National Natural Science Foundation of China(Grant No.52008402)the Central South University autonomous exploration project(Grant No.2021zzts0790).
文摘The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.