The Mg-Sn alloys,with basal or prismatic Mg_(2)Sn laths,were employed to reveal the effect of precipitate orientation on twinning behavior quantitatively.The Mg-5wt.%Sn alloys with basal or prismatic Mg_(2)Sn were com...The Mg-Sn alloys,with basal or prismatic Mg_(2)Sn laths,were employed to reveal the effect of precipitate orientation on twinning behavior quantitatively.The Mg-5wt.%Sn alloys with basal or prismatic Mg_(2)Sn were compressed to study the twinning behaviors.Subsequently,an Orowan strengthening model was developed to quantitatively investigate the critical resolved shear stress(CRSS)increment of precipitates on twinning.The results revealed that the prismatic precipitates hindered the transfer and growth of tensile twins more effectively compared with the basal precipitates.The decreased proportion of tensile twins containing prismatic Mg_(2)Sn might be attributed to a larger CRSS increment for tensile twins compared with that for basal precipitates.The obvious decreased twinning transfer in the alloy with prismatic Mg_(2)Sn could be due to its higher geometrically necessary dislocation and enhanced CRSS of tensile twins.Notably,the prismatic precipitates have a better hindering effect on tensile twins during compression.展开更多
SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanop...SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanoparticles impedes the reconversion back to SnO_(2),resulting in low coulombic efficiency and rapid capacity decay.In this study,we fabricated a heterostructure by combining SnO_(2)nanoparticles with MoS_(2)nanosheets via plasma-assisted milling.The heterostructure consists of in-situ exfoliated MoS_(2)nanosheets predominantly in 1 T phase,which tightly encase the SnO_(2)nanoparticles through strong bonding.This configuration effectively mitigates the volume change and particle aggregation upon cycling.Moreover,the strong affinity of Mo,which is the lithiation product of MoS_(2),toward Sn plays a pivotal role in inhibiting the coarsening of Sn nanograins,thus enhancing the reversibility of Sn to SnO_(2)upon cycling.Consequently,the SnO_(2)/MoS_(2)heterostructure exhibits superb performance as an anode material for LIBs,demonstrating high capacity,rapid rate capability,and extended lifespan.Specifically,discharged/charged at a rate of 0.2 A g^(-1)for 300 cycles,it achieves a remarkable reversible capacity of 1173.4 mAh g^(-1).Even cycled at high rates of 1.0 and 5.0 A g^(-1)for 800 cycles,it still retains high reversible capacities of 1005.3 and 768.8 mAh g^(-1),respectively.Moreover,the heterostructure exhibits outstanding electrochemical performance in both full LIBs and sodium-ion batteries.展开更多
基金supported by the Jiangsu Province Industry–University–Research Project,China(No.BY20221160)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3798)+2 种基金the National Natural Science Foundation of China(No.52275339)the Key Research and Development Plan of the Ministry of Science and Technology,China(No.2023YFE0200400)the Science and Technology Project of Jiangsu Province,China(No.BZ2021053)。
基金National Natural Science Foundation of China(Nos.52004227,U22A20187,52201106)the China Postdoctoral Science Foundation(No.2020M683240)+1 种基金the Key Area Research and Development Program of Guangdong ProvinceChina(No.2020B090924002)。
文摘The Mg-Sn alloys,with basal or prismatic Mg_(2)Sn laths,were employed to reveal the effect of precipitate orientation on twinning behavior quantitatively.The Mg-5wt.%Sn alloys with basal or prismatic Mg_(2)Sn were compressed to study the twinning behaviors.Subsequently,an Orowan strengthening model was developed to quantitatively investigate the critical resolved shear stress(CRSS)increment of precipitates on twinning.The results revealed that the prismatic precipitates hindered the transfer and growth of tensile twins more effectively compared with the basal precipitates.The decreased proportion of tensile twins containing prismatic Mg_(2)Sn might be attributed to a larger CRSS increment for tensile twins compared with that for basal precipitates.The obvious decreased twinning transfer in the alloy with prismatic Mg_(2)Sn could be due to its higher geometrically necessary dislocation and enhanced CRSS of tensile twins.Notably,the prismatic precipitates have a better hindering effect on tensile twins during compression.
基金the financial support from the National Key Research and Development Program of China(2018YFA0209402,2022YFB2502003)Guangdong Basic and Applied Basic Research Foundation(2023B1515040011)Jiangxi Provincial Natural Science Foundation(20212BAB214028)
文摘SnO_(2),with its high theoretical capacity,abundant resources,and environmental friendliness,is widely regarded as a potential anode material for lithium-ion batteries(LIBs).Nevertheless,the coarsening of the Sn nanoparticles impedes the reconversion back to SnO_(2),resulting in low coulombic efficiency and rapid capacity decay.In this study,we fabricated a heterostructure by combining SnO_(2)nanoparticles with MoS_(2)nanosheets via plasma-assisted milling.The heterostructure consists of in-situ exfoliated MoS_(2)nanosheets predominantly in 1 T phase,which tightly encase the SnO_(2)nanoparticles through strong bonding.This configuration effectively mitigates the volume change and particle aggregation upon cycling.Moreover,the strong affinity of Mo,which is the lithiation product of MoS_(2),toward Sn plays a pivotal role in inhibiting the coarsening of Sn nanograins,thus enhancing the reversibility of Sn to SnO_(2)upon cycling.Consequently,the SnO_(2)/MoS_(2)heterostructure exhibits superb performance as an anode material for LIBs,demonstrating high capacity,rapid rate capability,and extended lifespan.Specifically,discharged/charged at a rate of 0.2 A g^(-1)for 300 cycles,it achieves a remarkable reversible capacity of 1173.4 mAh g^(-1).Even cycled at high rates of 1.0 and 5.0 A g^(-1)for 800 cycles,it still retains high reversible capacities of 1005.3 and 768.8 mAh g^(-1),respectively.Moreover,the heterostructure exhibits outstanding electrochemical performance in both full LIBs and sodium-ion batteries.