The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0...The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode.展开更多
Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- a...Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.展开更多
Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots...Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots(USLR).An experiment was implemented to verify the swimming along the straight line of USLR.A simulation platform is also established for the analysis of the swimming of USLR.To figure out adaptive swimming of USLR to different underwater environments,the relationships between CPG parameters and maximum swimming speed have been discussed,and the switching between different swimming modes has been implemented.展开更多
We investigated the concentration of trihalomethanes (THMs) in tap water and swimming pool water in the area of the Nakhon Path- om Municipality during the period April 2005-March 2006. The concentrations of total T...We investigated the concentration of trihalomethanes (THMs) in tap water and swimming pool water in the area of the Nakhon Path- om Municipality during the period April 2005-March 2006. The concentrations of total THMs, chloroform, bromodichloromethane, dibromochloromethane and bromoform in tap water were 12.70-41.74, 6.72-29.19, 1.12-11.75, 0.63-3.55 and 0.08-3.40 μg/L, respectively, whereas those in swimming pool water were 26.15-65.09, 9.50-36.97, 8.90-18.01, 5.19-22.78 and ND-6.56 μg/L, respectively. It implied that the concentration of THMs in swimming pool water was higher than those in tap water, particularly, brominated-THMs. Both tap water and swimming pool water contained concentrations of total THMs below the standards of the World Health Organization (WHO), European Union (EU) and the United States Environmental Protection Agency (USEPA) phase Ⅰ, but 1 out of 60 tap water samples and 60 out of 72 swimming pool water samples contained those over the Standard of the USEPA phase Ⅱ. From the two cases of cancer risk assessment including Case Ⅰ Non-Swimmer and Case Ⅱ Swimmer, assessment of cancer risk of nonswimmers from exposure to THMs at the highest and the average concentrations was 4.43×10^-5 and 2.19×10^-5, respectively, which can be classified as acceptable risk according to the Standard of USEPA. Assessment of cancer risk of swimmers from exposure to THMs at the highest and the average concentrations was 1.47×10^-3 and 7.99×10^-4, respectively, which can be classified as unacceptable risk and needs to be improved. Risk of THMs exposure from swimming was 93.9%-94.2% of the total risk. Cancer risk of THMs concluded from various routes in descending order was: skin exposure while swimming, gastro-intestinal exposure from tap water intake, and skin exposure to tap water and gastro-intestinal exposure while swimming. Cancer risk from skin exposure while swimming was 94.18% of the total cancer risk.展开更多
There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m...There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.展开更多
This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, P ortunus trituberculatus. Four isonitrogenous and isoenergetic expe...This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, P ortunus trituberculatus. Four isonitrogenous and isoenergetic experimental diets were formulated to contain four separate lipid sources, including fish, soybean, rapeseed, and linseed oils(FO, SO, RO, and LO, respectively). With three replicates of 18 crabs each for each diet, crabs(initial body weight, 17.00 ±0.09 g) were fed twice daily for 8 weeks. There were no significant differences among these groups in terms of weight gain, specific growth rate, and hepatosomatic index. However, the RO groups' survival rate was significantly lower than FO groups. The feed conversion and protein efficiency ratios of RO groups were poorer than other groups. The proximate compositions of whole body and hepatopancreas were significantly affected by these dietary treatments. Tissue fatty acid composition mainly reflected dietary fatty acid compositions. Crabs fed FO diets exhibited significantly higher arachidonic, eicosapentaenoic, and docosahexaenoic acid contents in muscle and hepatopancreas compared with VO crabs. Linoleic, oleic, and linolenic acids in muscle and hepatopancreas were the highest in the SO, RO, and LO groups, respectively. The present study suggested that SO and LO could substitute for FO in fishmeal-based diets for swimming crabs, without affecting growth performance and survival.展开更多
The swimming endurance of whiteleg shrimp (Litopenaeus vannamei, 87.66 mm±0.25 mm, 7.73 g±0.06 g) was exam-ined at various concentrations of dissolved oxygen (DO, 1.9, 3.8, 6.8 and 13.6mgL-1) in a swimmi...The swimming endurance of whiteleg shrimp (Litopenaeus vannamei, 87.66 mm±0.25 mm, 7.73 g±0.06 g) was exam-ined at various concentrations of dissolved oxygen (DO, 1.9, 3.8, 6.8 and 13.6mgL-1) in a swimming channel against one of the fiveflow velocities (vb v2, v3, v4 and vs). Metabolite contents in the plasma, hepatopancreas and pleopods muscle of the shrimp werequantified before and after swimming fatigue. The results revealed that the swimming speed and DO concentration were significantfactors that affected the swimming endurance ofL. vannamei. The relationship between swimming endurance and swimming speedat various DO concentrations can be described by the power model (vtb= a). The relationship between DO concentration (mgL-l) e 9000and the swimming ability index (SAI), defined as SAI= ∫9000vdt (cm), can be described as SAI=27.947DO0.137 (R2=0.9312). Thelevel of DO concentration directly affected the physiology of shrimp, and exposure to low concentrations of DO led to the increasesin lactate and energetic substrate content in the shrimp. In responding to the low DO concentration at 1.9 mg L-1 and the swimmingstress, L. vannamei exhibited a mix of aerobic and anaerobic metabolism to satisfy the energetic demand, mainly characterized by theutilization of total protein and glycogen and the production of lactate and glucose. Fatigue from swimming led to severe loss ofplasma triglyceride at Vl, v2, and v3 with 1.9mgL-1DO, and at V1 with 3.8, 6.8 and 13.6mgL-1 DO, whereas the plasma glucose con-tent increased significantly at v3, v4 and v5 with 3.8 and 6.8mgL-1 DO, and at v5 with 13.6mgL-1 DO. The plasma total protein andhepatopancreas glycogen were highly depleted in shrimp by swimming fatigue at various DO concentrations, whereas the plasmalactate accumulated at high levels after swimming fatigue at different velocities. These results were of particular value to under-standing the locomotory ability of whiteleg shrimp and its physiological changes, further contributing to the improvement of captureand rearing technique.展开更多
Effect of salinity on survival,feeding behavior and growth of juvenile swimming crab P ortunus trituberculatus was investigated under 5 salinity levels of 5,10,20,30 and 40. The results show that the crab juveniles fe...Effect of salinity on survival,feeding behavior and growth of juvenile swimming crab P ortunus trituberculatus was investigated under 5 salinity levels of 5,10,20,30 and 40. The results show that the crab juveniles fed 2 or 3 times at the salinity 20 and 30,each lasted for about 25 minutes,for a total feeding time of 73.2±22.65 minutes per day. At these salinities,there were significantly higher in the frequency of feeding and in total feeding time than those at lower salinities of 5 and 10. All crab juveniles moulted when reared at a salinity of 20 during the 5 days duration of the experiment,which is significantly higher than those at other salinities. All juveniles survived at salinity 20,and the survivorship was not significantly different from that at 30,but was signif icantly higher than those at other salinities. The crab juveniles reared at a salinity of 20 had the highest value of food ration of 0.190 8±0.011 3 g/g BW,average body weight gain of 0.796±0.128 g,gain rate of 87%–96%,and food conversion ratio of 1.20±0.09. There was no significant difference in the values found between 20 and 30 but these values were significantly lower than that at the other salinities( P> 0.05). Highest activities of digestive enzymes(Amylase,Protease,Lipase) and lowest activities of protective enzymes(SOD,PO,CAT) were also obtained on crab juveniles reared at salinity of 20.展开更多
A moderate stress such as cold water swimming can raise the tolerance of the body to potentially injurious events. However, little is known about the mechanism of beneficial effects induced by moderate stress. In this...A moderate stress such as cold water swimming can raise the tolerance of the body to potentially injurious events. However, little is known about the mechanism of beneficial effects induced by moderate stress. In this study, we used a classic rat model of traumatic brain injury to test the hypothesis that cold water swimming preconditioning improved the recovery of cognitive functions and explored the mechanisms. Results showed that after traumatic brain injury, pre-conditioned rats(cold water swimming for 3 minutes at 4℃) spent a significantly higher percent of times in the goal quadrant of cold water swim, and escape latencies were shorter than for non-pretreated rats. The number of circulating endothelial progenitor cells was significantly higher in pre-conditioned rats than those without pretreatment at 0, 3, 6 and 24 hours after traumatic brain injury. Immunohistochemical staining and Von Willebrand factor staining demonstrated that the number of CD34~+ stem cells and new blood vessels in the injured hippocampus tissue increased significantly in pre-conditioned rats. These data suggest that pretreatment with cold water swimming could promote the proliferation of endothelial progenitor cells and angiogenesis in the peripheral blood and hippocampus. It also ameliorated cognitive deficits caused by experimental traumatic brain injury.展开更多
Background:Vascular cognitive impairment caused by chronic cerebral hypoperfusion(CCH)has become a hot issue worldwide.Aerobic exercise positively contributes to the preservation or restoration of cognitive abilities;...Background:Vascular cognitive impairment caused by chronic cerebral hypoperfusion(CCH)has become a hot issue worldwide.Aerobic exercise positively contributes to the preservation or restoration of cognitive abilities;however,the specific mechanism has remained inconclusive.And recent studies found that neurogranin(Ng)is a potential biomarker for cognitive impairment.This study aims to investigate the underlying role of Ng in swimming training to improve cognitive impairment.Methods:To test this hypothesis,the clustered regularly interspaced short palindromic repeats(CRISPR)-associated protein 9(Cas9)system was utilized to construct a strain of Ng conditional knockout(Ng cKO)mice,and bilateral common carotid artery stenosis(BCAS)surgery was performed to prepare the model.In Experiment 1,2-month-old male and female transgenic mice were divided into a control group(wild-type littermate,n=9)and a Ng cKO group(n=9).Then,2-month-old male and female C57BL/6 mice were divided into a sham group(C57BL/6,n=12)and a BCAS group(n=12).In Experiment 2,2-month-old male and female mice were divided into a sham group(wild-type littermate,n=12),BCAS group(n=12),swim group(n=12),BCAS+Ng cKO group(n=12),and swim+Ng cKO group(n=12).Then,7 days after BCAS,mice were given swimming training for 5 weeks(1 week for adaptation and 4 weeks for training,5 days a week,60 min a day).After intervention,laser speckle was used to detect cerebral blood perfusion in the mice,and the T maze and Morris water maze were adopted to test their spatial memory.Furthermore,electrophysiology and Western blotting were conducted to record long-term potential and observe the expressions of Ca^(2+)pathway-related proteins,respectively.Immunohistochemistry was applied to analyze the expression of relevant markers in neuronal damage,inflammation,and white matter injury.Results:The figures showed that spatial memory impairment was detected in Ng cKO mice,and a sharp decline of cerebral blood flow and an impairment of progressive spatial memory were observed in BCAS mice.Regular swimming training improved the spatial memory impairment of BCAS mice.This was achieved by preventing long-term potential damage and reversing the decline of Ca^(2+)signal transduction pathway-related proteins.At the same time,the results suggested that swimming also led to improvements in neuronal death,inflammation,and white matter injury induced by CCH.Further study adopted the use of Ng cKO transgenic mice,and the results indicated that the positive effects of swimming training on cognitive impairments,synaptic plasticity,and related pathological changes caused by CCH could be abolished by the knockout of Ng.Conclusion:Swimming training can mediate the expression of Ng to enhance hippocampal synaptic plasticity and improve related pathological changes induced by CCH,thereby ameliorating the spatial memory impairment of vascular cognitive impairment.展开更多
Physical exe rcise effectively alleviates chronic pain associated with complex regional pain syndrome type-Ⅰ.However,the mechanism of exe rcise-induced analgesia has not been clarified.Recent studies have shown that ...Physical exe rcise effectively alleviates chronic pain associated with complex regional pain syndrome type-Ⅰ.However,the mechanism of exe rcise-induced analgesia has not been clarified.Recent studies have shown that the specialized pro-resolving lipid mediator resolvin E1 promotes relief of pathologic pain by binding to chemerin receptor 23 in the nervous system.However,whether the resolvin E1-chemerin receptor 23 axis is involved in exercise-induced analgesia in complex regional pain syndrome type-Ⅰ has not been demonstrated.In the present study,a mouse model of chronic post-ischemia pain was established to mimic complex regional pain syndrome type-Ⅰ and subjected to an intervention involving swimming at different intensities.Chronic pain was reduced only in mice that engaged in high-intensity swimming.The resolvin E1-chemerin receptor 23 axis was clearly downregulated in the spinal cord of mice with chronic pain,while high-intensity swimming restored expression of resolvin E1 and chemerin receptor 23.Finally,shRNA-mediated silencing of chemerin receptor 23in the spinal cord reve rsed the analgesic effect of high-intensity swimming exercise on chronic post-ischemic pain and the anti-inflammato ry pola rization of microglia in the dorsal horn of the spinal cord.These findings suggest that high-intensity swimming can decrease chronic pain via the endogenous resolvin E1-chemerin receptor 23 axis in the spinal cord.展开更多
Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of millions of years,which can provide bio-inspiration for robotic fish design.The premise of designing an excellen...Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of millions of years,which can provide bio-inspiration for robotic fish design.The premise of designing an excellent robotic fish include fully understanding of fish locomotion mechanism and grasp of the advanced control strategy in robot domain.In this paper,the research development on fish swimming is presented,aiming to offer a reference for the later research.First,the research methods including experimental methods and simulation methods are detailed.Then the current research directions including fish locomotion mechanism,structure and function research and bionic robotic fish are outlined.Fish locomotion mechanism is discussed from three views:macroscopic view to find a unified principle,microscopic view to include muscle activity and intermediate view to study the behaviors of single fish and fish school.Structure and function research is mainly concentrated from three aspects:fin research,lateral line system and body stiffness.Bionic robotic fish research focuses on actuation,materials and motion control.The paper concludes with the future trend that curvature control,machine learning and multiple robotic fish system will play a more important role in this field.Overall,the intensive and comprehensive research on fish swimming will decrease the gap between robotic fish and real fish and contribute to the broad application prospect of robotic fish.展开更多
BACKGROUND: The orbitofrontal cortex (OFC) is a brain region closely associated with emotion. 5-hydroxytryptamine (5-HT) has been shown to be involved in human depression. OBJECTIVE: To investigate OFC actions a...BACKGROUND: The orbitofrontal cortex (OFC) is a brain region closely associated with emotion. 5-hydroxytryptamine (5-HT) has been shown to be involved in human depression. OBJECTIVE: To investigate OFC actions and mechanisms of 5-HT and 5-HT1A receptor (5-HT1AR) in stress-induced depression.DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at Laboratory of Neurobiology, College of Life Science, Shaanxi Normal University between May 2006 and March 2008. MATERIALS: 5-HT, p-chlorophenylalanine (PCPA, an inhibitor to tryptophan hydroxylase) and spiperone (5-HT1AR antagonist) were provided by Sigma, USA; rabbit anti-rat 5-HT1AR antibody was provided by Tianjin Haoyang Biological Manufacture. METHODS: A total of 40 male Sprague Dawley rats, aged 3 months, were randomly divided into five groups: control, model, 5-HT, spiperone + 5-HT, and PCPA, with 8 rats in each group. Except for control group, rats in the other four groups were used to establish depression models by forced swimming for 15 minutes. At 30 minutes before forced swimming test, 0.5 pL of 5-HT (12.5 pg/pL), PCPA (20 pg/pL), spiperone (1.3 pg/pL) + 5-HT (12.5 pg/pL, 10 minutes later), and saline were respectively injected into the OFC of 5-HT, PCPA, spiperone + 5-HT, and model groups, respectively. The control group received a saline microinjection into the OFC.MAIN OUTCOME MEASURES: Forced swimming and open field tests were employed to measure animal behaviors, and immunohistochemistry was used to analyze 5-HT1AR expression in the OFC, cingulate cortex, and piriform cortex. RESULTS: (1) Compared with the model group, 5-HT microinjection into the OFC prominently reduced immobility time in the forced swimming test and rearing in open field test (P 〈 0.05); locomotion and grooming in open field test were increased, although there was no significance (P 〉 0.05). Furthermore, following PCPA microinjection into the OFC (PCPA + forced swimming stress), immobility time in forced swimming test increased dramatically (P〈 0.01), locomotion and rearing in open field test declined (P〈 0.05 and P 〈 0.01, respectively). Compared with the 5-HT group, 5-HT1AR antagonist (spiperone + 5-HT + forced swimming stress) increased immobility time in forced swimming test (P 〈 0.01), but decreased locomotion, rearing, and grooming in open field test. (2) Forced swimming stress markedly elevated 5-HT1AR expression in OFC, cingulate cortex, and piriform cortex (P〈 0.05 or P〈 0.01). CONCLUSION: 5-HT improved stress-induced depression, and 5-HT anti-depression effects are primarily achieved via 5-HT1AR. Stress-induced up regulation of 5-HT1AR expression might be a compensatory mechanism for decreased 5-HT expression.展开更多
Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in...Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in experimental and computational results.Actually,microorganisms transport a miscellaneous palette of ingredients in manufacturing industrial goods particularly in fertilizer industries.Heat transfer characteristics of molecular structure are measured by a physical phenomenon which is allied with the transpiration of heat within matter.Motivated by bioinspired fuel cells involved in near-surface flow phenomena,in the present article,we examine the transverse swimming of motile gyrotactic microorganisms numerically in a rheological Jeffery fluid near a stretching wall.The leading physical model is converted in a nonlinear system of ODEs through proper similarity alterations.A numerical technique called shooting method with R-K Fehlberg is applied via mathematical software and graphical presentations are obtained.The influence of all relative physical constraints on velocity,temperature,concentration,and volume fraction of gyrotactic microorganisms is expressed geometrically.It is found that heat and mass flux at the surface as well as density of motile microorganism’s declines for Brownian motion and thermophoresis parameter.Comparison in tabular form is made with existing literature to validate the results for limiting cases with convective boundary conditions.展开更多
The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (...The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (FSMA) composite and hybrid mechanism that can provide a fast response and a strong thrust. The caudal peduncle actuator was inspired by Scomber Scombrus which utilises thunniform mode swimming, which is the most efficient locomotion mode evolved in the aquatic environment, where the thrust is generated by the lift-based method, allowing high cruising speeds to be maintained for a long period of time. The morphology of an average size Scomber Scombrus (length in 310 mm) was investigated, and a 1:1 scale caudal peduncle actuator prototype was modelled and fabricated. The propulsive wave characteristics of the fish at steady speeds were employed as initial design objectives. Some key design parameters are investigated, i.e. aspect ratio (AR) (AR = 3.49), Reynolds number (Re = 429 649), reduced frequency (σ = 1.03), Strouhal number (St = 0.306) and the maximum strain of the bent tail was estimated at ε = 1.11% which is in the range of superelasticity. The experimental test of the actuator was carried out in a water tank. By applying 7 V and 2.5 A, the actuator can reach the tip-to-tip rotational angle of 85° at 4 Hz.展开更多
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and str...Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body–fin interac-tion, C-start and maneuvering, swimming in turbulence,collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.展开更多
Swimming speeds are the most important index for the evaluation of the fish swimming performance. The terminologies and classifications of the fish swimming performance were summarized in this paper. Taking into consi...Swimming speeds are the most important index for the evaluation of the fish swimming performance. The terminologies and classifications of the fish swimming performance were summarized in this paper. Taking into consideration of the widely used evaluation approaches of the fish swimming performance by different researchers, a recommended classification methodology of the fish swimming performance was proposed by the authors. And a new concept of the swimming speed, the Maximum Domed Swimming Speed (DSS), was introduced into this new classification framework together with a discussion on its calculation method and the practical significance. According to the classification system, the fish swimming speeds are classified into five categories: Optimum Swimming Speed, Maximum Sustained Swimming Speed, Critical Swimming Speed, Maximum Domed Swimming Speed, and Burst Swimming Speed. Other concepts of swimming speeds are generally merged into the above five categories, respectively. Furthermore, possible relevancies among the Maximum Sustained Swimming Speed (MSS), the Critical Swimming Speed (CSS), and the Maximum Domed Swimming Speed (DSS) were discussed. It was concluded that these three swimming speeds, in a sense, can be regarded as the equivalent indices for the evaluation of fish swimming performance.展开更多
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robo...A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.展开更多
Chlorination of pool water leads to the forma-tion of many by-products, chloroform usually being the most abundant. The paper reports the results of a study evaluating exposure of bath-ers and pool employees to trihal...Chlorination of pool water leads to the forma-tion of many by-products, chloroform usually being the most abundant. The paper reports the results of a study evaluating exposure of bath-ers and pool employees to trihalomethanes (chloroform, bromodichloromethane, dibromo-chloromethane, bromoform) in four indoor swimming pools with chlorinated water. Chlo-roform concentrations in environmental air samples when the pool was in use (about 9 h), in the range 1-182 μg/m3, were greater near the pool than in the change rooms, passageways and offices. Chloroform concentrations in per-sonal air samples of pool employees were in the range 18-138 μg/m3. Urinary concentrations of chloroform averaged (geometric means) 0.123 and 0.165 μg/l and 0.404 and 0.342 μg/l prior and at the end of exposure during in water and out of water activities, respectively. The significant increase in urinary excretion of chloroform confirms that the source of the contaminant was pool water. Absorption of chloroform, estimated from airborne and water concentrations, was significantly correlated with delta chloroform (after/before exposure) and urinary concentra-tions of chloroform at the end of exposure. As chloroform is a toxic and possibly carcinogenic substance, these observations pose a problem principally for the general population of pool users.展开更多
Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of ...Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry(PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12132015 and 12372251)the Fundamental Research Funds for the Provincial Universities of Zhejiang of China(No.2023YW69)。
文摘The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode.
基金supported by the National Natural Science Foundation of China(10172095 and 10672183)
文摘Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.
文摘Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots(USLR).An experiment was implemented to verify the swimming along the straight line of USLR.A simulation platform is also established for the analysis of the swimming of USLR.To figure out adaptive swimming of USLR to different underwater environments,the relationships between CPG parameters and maximum swimming speed have been discussed,and the switching between different swimming modes has been implemented.
文摘We investigated the concentration of trihalomethanes (THMs) in tap water and swimming pool water in the area of the Nakhon Path- om Municipality during the period April 2005-March 2006. The concentrations of total THMs, chloroform, bromodichloromethane, dibromochloromethane and bromoform in tap water were 12.70-41.74, 6.72-29.19, 1.12-11.75, 0.63-3.55 and 0.08-3.40 μg/L, respectively, whereas those in swimming pool water were 26.15-65.09, 9.50-36.97, 8.90-18.01, 5.19-22.78 and ND-6.56 μg/L, respectively. It implied that the concentration of THMs in swimming pool water was higher than those in tap water, particularly, brominated-THMs. Both tap water and swimming pool water contained concentrations of total THMs below the standards of the World Health Organization (WHO), European Union (EU) and the United States Environmental Protection Agency (USEPA) phase Ⅰ, but 1 out of 60 tap water samples and 60 out of 72 swimming pool water samples contained those over the Standard of the USEPA phase Ⅱ. From the two cases of cancer risk assessment including Case Ⅰ Non-Swimmer and Case Ⅱ Swimmer, assessment of cancer risk of nonswimmers from exposure to THMs at the highest and the average concentrations was 4.43×10^-5 and 2.19×10^-5, respectively, which can be classified as acceptable risk according to the Standard of USEPA. Assessment of cancer risk of swimmers from exposure to THMs at the highest and the average concentrations was 1.47×10^-3 and 7.99×10^-4, respectively, which can be classified as unacceptable risk and needs to be improved. Risk of THMs exposure from swimming was 93.9%-94.2% of the total risk. Cancer risk of THMs concluded from various routes in descending order was: skin exposure while swimming, gastro-intestinal exposure from tap water intake, and skin exposure to tap water and gastro-intestinal exposure while swimming. Cancer risk from skin exposure while swimming was 94.18% of the total cancer risk.
基金the National Natural Science Foundation of China (Grant No. 50579007)
文摘There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.
基金Supported by the Agriculture Science Technology Achievement Transformation Fund(No.2014GB2C22015)the Public Projects of Zhejiang Province(Nos.2013C32037,2013C31032)+3 种基金the Zhejiang Major Special Program of Breeding(No.2012C12907-3)the Ningbo Innovation and Entrepreneurship Project(No.2014C92011)the Zhejiang Provincial Oceanic and Fishery Bureau ProjectZhoushan Science and Technology Bureau Project(No.2013C41007)
文摘This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, P ortunus trituberculatus. Four isonitrogenous and isoenergetic experimental diets were formulated to contain four separate lipid sources, including fish, soybean, rapeseed, and linseed oils(FO, SO, RO, and LO, respectively). With three replicates of 18 crabs each for each diet, crabs(initial body weight, 17.00 ±0.09 g) were fed twice daily for 8 weeks. There were no significant differences among these groups in terms of weight gain, specific growth rate, and hepatosomatic index. However, the RO groups' survival rate was significantly lower than FO groups. The feed conversion and protein efficiency ratios of RO groups were poorer than other groups. The proximate compositions of whole body and hepatopancreas were significantly affected by these dietary treatments. Tissue fatty acid composition mainly reflected dietary fatty acid compositions. Crabs fed FO diets exhibited significantly higher arachidonic, eicosapentaenoic, and docosahexaenoic acid contents in muscle and hepatopancreas compared with VO crabs. Linoleic, oleic, and linolenic acids in muscle and hepatopancreas were the highest in the SO, RO, and LO groups, respectively. The present study suggested that SO and LO could substitute for FO in fishmeal-based diets for swimming crabs, without affecting growth performance and survival.
文摘The swimming endurance of whiteleg shrimp (Litopenaeus vannamei, 87.66 mm±0.25 mm, 7.73 g±0.06 g) was exam-ined at various concentrations of dissolved oxygen (DO, 1.9, 3.8, 6.8 and 13.6mgL-1) in a swimming channel against one of the fiveflow velocities (vb v2, v3, v4 and vs). Metabolite contents in the plasma, hepatopancreas and pleopods muscle of the shrimp werequantified before and after swimming fatigue. The results revealed that the swimming speed and DO concentration were significantfactors that affected the swimming endurance ofL. vannamei. The relationship between swimming endurance and swimming speedat various DO concentrations can be described by the power model (vtb= a). The relationship between DO concentration (mgL-l) e 9000and the swimming ability index (SAI), defined as SAI= ∫9000vdt (cm), can be described as SAI=27.947DO0.137 (R2=0.9312). Thelevel of DO concentration directly affected the physiology of shrimp, and exposure to low concentrations of DO led to the increasesin lactate and energetic substrate content in the shrimp. In responding to the low DO concentration at 1.9 mg L-1 and the swimmingstress, L. vannamei exhibited a mix of aerobic and anaerobic metabolism to satisfy the energetic demand, mainly characterized by theutilization of total protein and glycogen and the production of lactate and glucose. Fatigue from swimming led to severe loss ofplasma triglyceride at Vl, v2, and v3 with 1.9mgL-1DO, and at V1 with 3.8, 6.8 and 13.6mgL-1 DO, whereas the plasma glucose con-tent increased significantly at v3, v4 and v5 with 3.8 and 6.8mgL-1 DO, and at v5 with 13.6mgL-1 DO. The plasma total protein andhepatopancreas glycogen were highly depleted in shrimp by swimming fatigue at various DO concentrations, whereas the plasmalactate accumulated at high levels after swimming fatigue at different velocities. These results were of particular value to under-standing the locomotory ability of whiteleg shrimp and its physiological changes, further contributing to the improvement of captureand rearing technique.
基金Supported by the Science and Technology Innovation Team of Marine Crab Industry in Ningbo City(No.2011B81003)the National Natural Science Foundation of China(No.41276123)+2 种基金the National Spark Plan Program of China(No.2012GA701048)the Key Project of Ministry of Education,Science and Technology(No.212070)the K C Wong Magana Fund in Ningbo University
文摘Effect of salinity on survival,feeding behavior and growth of juvenile swimming crab P ortunus trituberculatus was investigated under 5 salinity levels of 5,10,20,30 and 40. The results show that the crab juveniles fed 2 or 3 times at the salinity 20 and 30,each lasted for about 25 minutes,for a total feeding time of 73.2±22.65 minutes per day. At these salinities,there were significantly higher in the frequency of feeding and in total feeding time than those at lower salinities of 5 and 10. All crab juveniles moulted when reared at a salinity of 20 during the 5 days duration of the experiment,which is significantly higher than those at other salinities. All juveniles survived at salinity 20,and the survivorship was not significantly different from that at 30,but was signif icantly higher than those at other salinities. The crab juveniles reared at a salinity of 20 had the highest value of food ration of 0.190 8±0.011 3 g/g BW,average body weight gain of 0.796±0.128 g,gain rate of 87%–96%,and food conversion ratio of 1.20±0.09. There was no significant difference in the values found between 20 and 30 but these values were significantly lower than that at the other salinities( P> 0.05). Highest activities of digestive enzymes(Amylase,Protease,Lipase) and lowest activities of protective enzymes(SOD,PO,CAT) were also obtained on crab juveniles reared at salinity of 20.
基金supported by a grant from the Incubation Project of Natural Science Foundation of Tianjin Medical University General Hospital in China,No.303071901401the Natural Science Foundation of Tianjin of China,No.13JCZDJC30800the National Natural Science Foundation of China,No.81271361 and 81330029
文摘A moderate stress such as cold water swimming can raise the tolerance of the body to potentially injurious events. However, little is known about the mechanism of beneficial effects induced by moderate stress. In this study, we used a classic rat model of traumatic brain injury to test the hypothesis that cold water swimming preconditioning improved the recovery of cognitive functions and explored the mechanisms. Results showed that after traumatic brain injury, pre-conditioned rats(cold water swimming for 3 minutes at 4℃) spent a significantly higher percent of times in the goal quadrant of cold water swim, and escape latencies were shorter than for non-pretreated rats. The number of circulating endothelial progenitor cells was significantly higher in pre-conditioned rats than those without pretreatment at 0, 3, 6 and 24 hours after traumatic brain injury. Immunohistochemical staining and Von Willebrand factor staining demonstrated that the number of CD34~+ stem cells and new blood vessels in the injured hippocampus tissue increased significantly in pre-conditioned rats. These data suggest that pretreatment with cold water swimming could promote the proliferation of endothelial progenitor cells and angiogenesis in the peripheral blood and hippocampus. It also ameliorated cognitive deficits caused by experimental traumatic brain injury.
基金Supported by the Youth Top Talent Project of Fujian Province,China“Young Eagle Project”(No.2901-750102003)。
文摘Background:Vascular cognitive impairment caused by chronic cerebral hypoperfusion(CCH)has become a hot issue worldwide.Aerobic exercise positively contributes to the preservation or restoration of cognitive abilities;however,the specific mechanism has remained inconclusive.And recent studies found that neurogranin(Ng)is a potential biomarker for cognitive impairment.This study aims to investigate the underlying role of Ng in swimming training to improve cognitive impairment.Methods:To test this hypothesis,the clustered regularly interspaced short palindromic repeats(CRISPR)-associated protein 9(Cas9)system was utilized to construct a strain of Ng conditional knockout(Ng cKO)mice,and bilateral common carotid artery stenosis(BCAS)surgery was performed to prepare the model.In Experiment 1,2-month-old male and female transgenic mice were divided into a control group(wild-type littermate,n=9)and a Ng cKO group(n=9).Then,2-month-old male and female C57BL/6 mice were divided into a sham group(C57BL/6,n=12)and a BCAS group(n=12).In Experiment 2,2-month-old male and female mice were divided into a sham group(wild-type littermate,n=12),BCAS group(n=12),swim group(n=12),BCAS+Ng cKO group(n=12),and swim+Ng cKO group(n=12).Then,7 days after BCAS,mice were given swimming training for 5 weeks(1 week for adaptation and 4 weeks for training,5 days a week,60 min a day).After intervention,laser speckle was used to detect cerebral blood perfusion in the mice,and the T maze and Morris water maze were adopted to test their spatial memory.Furthermore,electrophysiology and Western blotting were conducted to record long-term potential and observe the expressions of Ca^(2+)pathway-related proteins,respectively.Immunohistochemistry was applied to analyze the expression of relevant markers in neuronal damage,inflammation,and white matter injury.Results:The figures showed that spatial memory impairment was detected in Ng cKO mice,and a sharp decline of cerebral blood flow and an impairment of progressive spatial memory were observed in BCAS mice.Regular swimming training improved the spatial memory impairment of BCAS mice.This was achieved by preventing long-term potential damage and reversing the decline of Ca^(2+)signal transduction pathway-related proteins.At the same time,the results suggested that swimming also led to improvements in neuronal death,inflammation,and white matter injury induced by CCH.Further study adopted the use of Ng cKO transgenic mice,and the results indicated that the positive effects of swimming training on cognitive impairments,synaptic plasticity,and related pathological changes caused by CCH could be abolished by the knockout of Ng.Conclusion:Swimming training can mediate the expression of Ng to enhance hippocampal synaptic plasticity and improve related pathological changes induced by CCH,thereby ameliorating the spatial memory impairment of vascular cognitive impairment.
基金National Key R&D Program of China,Nos.2019YFA0110300 (to LZ),2021YFA1201400 (to LZ)Natural Science Foundation of Shanghai,No.21ZR1468600 (to LZ)Open Fund of the Key Laboratory of Cellular Physiology (Shanxi Medical University),Ministry of Education,No.KLMEC/SXMU-201910 (to XJ)。
文摘Physical exe rcise effectively alleviates chronic pain associated with complex regional pain syndrome type-Ⅰ.However,the mechanism of exe rcise-induced analgesia has not been clarified.Recent studies have shown that the specialized pro-resolving lipid mediator resolvin E1 promotes relief of pathologic pain by binding to chemerin receptor 23 in the nervous system.However,whether the resolvin E1-chemerin receptor 23 axis is involved in exercise-induced analgesia in complex regional pain syndrome type-Ⅰ has not been demonstrated.In the present study,a mouse model of chronic post-ischemia pain was established to mimic complex regional pain syndrome type-Ⅰ and subjected to an intervention involving swimming at different intensities.Chronic pain was reduced only in mice that engaged in high-intensity swimming.The resolvin E1-chemerin receptor 23 axis was clearly downregulated in the spinal cord of mice with chronic pain,while high-intensity swimming restored expression of resolvin E1 and chemerin receptor 23.Finally,shRNA-mediated silencing of chemerin receptor 23in the spinal cord reve rsed the analgesic effect of high-intensity swimming exercise on chronic post-ischemic pain and the anti-inflammato ry pola rization of microglia in the dorsal horn of the spinal cord.These findings suggest that high-intensity swimming can decrease chronic pain via the endogenous resolvin E1-chemerin receptor 23 axis in the spinal cord.
基金National Natural Science Foundation of China(Grant No.51275127).
文摘Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of millions of years,which can provide bio-inspiration for robotic fish design.The premise of designing an excellent robotic fish include fully understanding of fish locomotion mechanism and grasp of the advanced control strategy in robot domain.In this paper,the research development on fish swimming is presented,aiming to offer a reference for the later research.First,the research methods including experimental methods and simulation methods are detailed.Then the current research directions including fish locomotion mechanism,structure and function research and bionic robotic fish are outlined.Fish locomotion mechanism is discussed from three views:macroscopic view to find a unified principle,microscopic view to include muscle activity and intermediate view to study the behaviors of single fish and fish school.Structure and function research is mainly concentrated from three aspects:fin research,lateral line system and body stiffness.Bionic robotic fish research focuses on actuation,materials and motion control.The paper concludes with the future trend that curvature control,machine learning and multiple robotic fish system will play a more important role in this field.Overall,the intensive and comprehensive research on fish swimming will decrease the gap between robotic fish and real fish and contribute to the broad application prospect of robotic fish.
基金the Natural Science Foundation of Shaanxi Province,No. 2006C240
文摘BACKGROUND: The orbitofrontal cortex (OFC) is a brain region closely associated with emotion. 5-hydroxytryptamine (5-HT) has been shown to be involved in human depression. OBJECTIVE: To investigate OFC actions and mechanisms of 5-HT and 5-HT1A receptor (5-HT1AR) in stress-induced depression.DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at Laboratory of Neurobiology, College of Life Science, Shaanxi Normal University between May 2006 and March 2008. MATERIALS: 5-HT, p-chlorophenylalanine (PCPA, an inhibitor to tryptophan hydroxylase) and spiperone (5-HT1AR antagonist) were provided by Sigma, USA; rabbit anti-rat 5-HT1AR antibody was provided by Tianjin Haoyang Biological Manufacture. METHODS: A total of 40 male Sprague Dawley rats, aged 3 months, were randomly divided into five groups: control, model, 5-HT, spiperone + 5-HT, and PCPA, with 8 rats in each group. Except for control group, rats in the other four groups were used to establish depression models by forced swimming for 15 minutes. At 30 minutes before forced swimming test, 0.5 pL of 5-HT (12.5 pg/pL), PCPA (20 pg/pL), spiperone (1.3 pg/pL) + 5-HT (12.5 pg/pL, 10 minutes later), and saline were respectively injected into the OFC of 5-HT, PCPA, spiperone + 5-HT, and model groups, respectively. The control group received a saline microinjection into the OFC.MAIN OUTCOME MEASURES: Forced swimming and open field tests were employed to measure animal behaviors, and immunohistochemistry was used to analyze 5-HT1AR expression in the OFC, cingulate cortex, and piriform cortex. RESULTS: (1) Compared with the model group, 5-HT microinjection into the OFC prominently reduced immobility time in the forced swimming test and rearing in open field test (P 〈 0.05); locomotion and grooming in open field test were increased, although there was no significance (P 〉 0.05). Furthermore, following PCPA microinjection into the OFC (PCPA + forced swimming stress), immobility time in forced swimming test increased dramatically (P〈 0.01), locomotion and rearing in open field test declined (P〈 0.05 and P 〈 0.01, respectively). Compared with the 5-HT group, 5-HT1AR antagonist (spiperone + 5-HT + forced swimming stress) increased immobility time in forced swimming test (P 〈 0.01), but decreased locomotion, rearing, and grooming in open field test. (2) Forced swimming stress markedly elevated 5-HT1AR expression in OFC, cingulate cortex, and piriform cortex (P〈 0.05 or P〈 0.01). CONCLUSION: 5-HT improved stress-induced depression, and 5-HT anti-depression effects are primarily achieved via 5-HT1AR. Stress-induced up regulation of 5-HT1AR expression might be a compensatory mechanism for decreased 5-HT expression.
文摘Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in experimental and computational results.Actually,microorganisms transport a miscellaneous palette of ingredients in manufacturing industrial goods particularly in fertilizer industries.Heat transfer characteristics of molecular structure are measured by a physical phenomenon which is allied with the transpiration of heat within matter.Motivated by bioinspired fuel cells involved in near-surface flow phenomena,in the present article,we examine the transverse swimming of motile gyrotactic microorganisms numerically in a rheological Jeffery fluid near a stretching wall.The leading physical model is converted in a nonlinear system of ODEs through proper similarity alterations.A numerical technique called shooting method with R-K Fehlberg is applied via mathematical software and graphical presentations are obtained.The influence of all relative physical constraints on velocity,temperature,concentration,and volume fraction of gyrotactic microorganisms is expressed geometrically.It is found that heat and mass flux at the surface as well as density of motile microorganism’s declines for Brownian motion and thermophoresis parameter.Comparison in tabular form is made with existing literature to validate the results for limiting cases with convective boundary conditions.
文摘The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (FSMA) composite and hybrid mechanism that can provide a fast response and a strong thrust. The caudal peduncle actuator was inspired by Scomber Scombrus which utilises thunniform mode swimming, which is the most efficient locomotion mode evolved in the aquatic environment, where the thrust is generated by the lift-based method, allowing high cruising speeds to be maintained for a long period of time. The morphology of an average size Scomber Scombrus (length in 310 mm) was investigated, and a 1:1 scale caudal peduncle actuator prototype was modelled and fabricated. The propulsive wave characteristics of the fish at steady speeds were employed as initial design objectives. Some key design parameters are investigated, i.e. aspect ratio (AR) (AR = 3.49), Reynolds number (Re = 429 649), reduced frequency (σ = 1.03), Strouhal number (St = 0.306) and the maximum strain of the bent tail was estimated at ε = 1.11% which is in the range of superelasticity. The experimental test of the actuator was carried out in a water tank. By applying 7 V and 2.5 A, the actuator can reach the tip-to-tip rotational angle of 85° at 4 Hz.
基金partly supported by the Grant-in-Aid for Scientific Research on Innovative Areas (Grant 24120007)the financial support from the JSPS Postdoctoral Fellowship
文摘Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body–fin interac-tion, C-start and maneuvering, swimming in turbulence,collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
文摘Swimming speeds are the most important index for the evaluation of the fish swimming performance. The terminologies and classifications of the fish swimming performance were summarized in this paper. Taking into consideration of the widely used evaluation approaches of the fish swimming performance by different researchers, a recommended classification methodology of the fish swimming performance was proposed by the authors. And a new concept of the swimming speed, the Maximum Domed Swimming Speed (DSS), was introduced into this new classification framework together with a discussion on its calculation method and the practical significance. According to the classification system, the fish swimming speeds are classified into five categories: Optimum Swimming Speed, Maximum Sustained Swimming Speed, Critical Swimming Speed, Maximum Domed Swimming Speed, and Burst Swimming Speed. Other concepts of swimming speeds are generally merged into the above five categories, respectively. Furthermore, possible relevancies among the Maximum Sustained Swimming Speed (MSS), the Critical Swimming Speed (CSS), and the Maximum Domed Swimming Speed (DSS) were discussed. It was concluded that these three swimming speeds, in a sense, can be regarded as the equivalent indices for the evaluation of fish swimming performance.
基金supported by the National Natural Science Foundation of China (10772017 and 10472011)BUAA-985 Foundation
文摘A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.
文摘Chlorination of pool water leads to the forma-tion of many by-products, chloroform usually being the most abundant. The paper reports the results of a study evaluating exposure of bath-ers and pool employees to trihalomethanes (chloroform, bromodichloromethane, dibromo-chloromethane, bromoform) in four indoor swimming pools with chlorinated water. Chlo-roform concentrations in environmental air samples when the pool was in use (about 9 h), in the range 1-182 μg/m3, were greater near the pool than in the change rooms, passageways and offices. Chloroform concentrations in per-sonal air samples of pool employees were in the range 18-138 μg/m3. Urinary concentrations of chloroform averaged (geometric means) 0.123 and 0.165 μg/l and 0.404 and 0.342 μg/l prior and at the end of exposure during in water and out of water activities, respectively. The significant increase in urinary excretion of chloroform confirms that the source of the contaminant was pool water. Absorption of chloroform, estimated from airborne and water concentrations, was significantly correlated with delta chloroform (after/before exposure) and urinary concentra-tions of chloroform at the end of exposure. As chloroform is a toxic and possibly carcinogenic substance, these observations pose a problem principally for the general population of pool users.
基金supported by the US Office of Naval Research (Grant N00014-14-1-0533) (Program Manager Robert Brizzolara)
文摘Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry(PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.