The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability,...The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability, low vapor pressure, and ionization potential. The performance of a lowpower iodine-fed Hall thruster matched with a xenon-fed cathode is investigated across a broad range of operation conditions. Regulation of the iodine vapor's mass flow rates is stably achieved by using a temperature control method of the iodine reservoir. The thrust measurements are finished utilizing a thrust target during the tests. Results show that thrust and anode-specific impulse increase approximately linearly with the increasing iodine mass flow rate.At the nominal power of 200 W class, iodine mass flow rates are 0.62 and 0.93 mg/s, thrusts are7.19 and 7.58 m N, anode specific impulses are 1184 and 826 s, anode efficiencies are 20.8%and 14.5%, and thrust to power ratios are 35.9 and 37.9 m N/k W under the conditions of 250 V,0.8 A and 200 V, 1.0 A, respectively. The operating characteristics of iodine-fed Hall thruster are analyzed in different states. Further work on the measurements of plasma characteristics and experimental optimization will be carried out.展开更多
In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current...In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.展开更多
The eastern Iranian range,known as the Sistan suture zone in the past,has recently been identified as the Sistan orogen.This Paleogene orogeny is located between the Lut and Afghan microcontinents.The structural analy...The eastern Iranian range,known as the Sistan suture zone in the past,has recently been identified as the Sistan orogen.This Paleogene orogeny is located between the Lut and Afghan microcontinents.The structural analysis shows that most of the thrusts dip towards the NW so that the Permo-Triassic sediments and Jurassic micro-diorites of the Lut Block overthrusted over the younger rocks.Structural studies show that the tectonic vergence was from the NW to the SE of the Sechengi area in the NW part of Sistan orogen.We recognized three deformation phases in eastern Iran.The first N-S deformation event(D1)resulted in the formation of tight E-W folds(F1)and associated cleavages(S1).The second E-W deformation event(D2),which occurred in the late Paleogene led to the bending of older structures,including the axial plane of the first-generation folds giving them a new northwest direction(F2).Additionally,the ramp of the first-phase thrusts(striking E-W)was reactivated,acquiring a new NNW orientation and exhibiting SSE tectonic vergence.The third deformation event(D3)resulted in the formation of NNE and WNW conjugate faults in eastern Iran.Such consecutive deformation events perpendicular to each other are inconsistent with the models of simple linear orogen presented for eastern Iran(i.e.rifting of eastern Iran continental crust and subsequence linear collision)and seem more consistent with the buckling orogeny(Orocline).展开更多
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
To reduce thrust ripple and cost and improve the average thrust of permanent magnet linear motors,a modular dual-field modulation permanent magnet linear motor was studied,and the parameters were optimized.First,sensi...To reduce thrust ripple and cost and improve the average thrust of permanent magnet linear motors,a modular dual-field modulation permanent magnet linear motor was studied,and the parameters were optimized.First,sensitive parameters were selected using the Taguchi method,and then the optimal variables were sampled using the optimal Latin hypercube experimental design method and an ensemble of surrogates model of optimization objectives,and its accuracy was verified.Next,a multi-objective particle swarm optimization algorithm was used to optimize the purpose of“maximum average thrust and minimum thrust ripple”,and the Pareto front of average thrust and thrust ripple was obtained.Finite element analysis showed that the optimized modular dual flux-modulation permanent magnet linear motor(MDFMPMLM)had a 29.5%reduction in thrust ripple and a 5%increase in average thrust compared to the original motor.This study provided an effective method for improving the performance of permanent magnet linear motors.展开更多
The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flo...The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flow around the airfoil. An efficient framework for implementing the coupled solver and optimization in a multicore environment has been implemented for the generation of optimized solutionsmaximizing thrust performance & computational speed.展开更多
The solid rocket motor driven system is one of the common ways for submarines to launch underwater missiles. It has significant advantages in improving the missile’s water exit speed, anti-interference capability, an...The solid rocket motor driven system is one of the common ways for submarines to launch underwater missiles. It has significant advantages in improving the missile’s water exit speed, anti-interference capability, and enemy striking power. The prediction of the underwater loading is a preliminary factor for the power system design of the underwater vehicle. This paper presents a rapid prediction method and validated by the experimental study for the underwater thrust of the solid rocket motor. Based on the potential flow assumption of the water field, a model of the bubble and a one-dimensional quasi-steady model of the nozzle are established to directly solve the flow status of the nozzle. The aerodynamic thrust and hydrodynamic thrust have been calculated and analyzed. The calculation results are within 5% error of the experimental results. Moreover, a design platform to predict the underwater thrust of the solid rocket motor has been developed based on Python and the PyQt library, which shows excellent system adaptability and computational efficiency.展开更多
The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key...The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.展开更多
The applications of the micro-thrust e r and the challenges of micro-thrust measuring are introduced.The developments in measuring techniques for the micro-thrust are reviewed.Micro-thrust measu rements have previousl...The applications of the micro-thrust e r and the challenges of micro-thrust measuring are introduced.The developments in measuring techniques for the micro-thrust are reviewed.Micro-thrust measu rements have previously been made either directly by mounting thrusters to the m easurement system or indirectly by mounting a target in the direct path of the e jected propellant.Several typical direct and indirect thrust-stands are presen ted and discussed in detail to illustrate the principles.Typical calibration me thods are also expounded.Finally,the resolution,uncertainty and thrust range of each thrust-stand are given,which may be helpful for the future thrust stan d design and micro-thrusters research.展开更多
Recent mapping and seismic survey reveal that intensive compression during the Early Cenozoic in the Qiangtang block of the central Tibetan Plateau formed an extensive complex of thrust sheets that moved relatively so...Recent mapping and seismic survey reveal that intensive compression during the Early Cenozoic in the Qiangtang block of the central Tibetan Plateau formed an extensive complex of thrust sheets that moved relatively southward along several generally north-dipping great thrust systems. Those at the borders of the ~450 km wide block show it overrides the Lhasa block to the south and is overridden by the Hohxil-Bayanhar block to the north. The systems are mostly thin-skinned imbricate thrusts with associated folding. The thrust sheets are chiefly floored by Jurassic limestone that apparently slid over Triassic sandstone and shale, which is locally included, and ramped upward and over Paleocene-Eocene red-beds. Some central thrusts scooped deeper and carried up Paleozoic metamorphic rock, Permian carbonate and granite to form a central uplift that divides the Qiangtang block into two parts. These systems and their associated structures are unconformably overlain by little deformed Late Eocene-Oligocene volcanic rock or capped by Miocene lake beds. A thrust system in the northern part of the block, as well as one in the northern part of the adjacent Lhasa block, dip to the south and appear to be due to secondary adjustments within the thrust sheets. The relative southward displacement across this Early Cenozoic mega thrust system is in excess of 150 km in the Qiangtang block, and the average southward slip-rate of the southern Qiangtang thrusts ranged from 5.6 mm to 7.4 mm/a during the Late Eocene-Oligocene. This Early Cenozoic thrusting ended before the Early Miocene and was followed by Late Cenozoic crustal extension and strike-slip faulting within the Qiangtang block. The revelation and understanding of these thrust systems are very important for the evaluation of the petroleum resources of the region.展开更多
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ...In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.展开更多
Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thr...Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thrust characteristics of water jet for conical nozzles directly determine the speed of autonomous underwater vehicles (AUV). Theoretical, numerical and experimental studies have been, carried out to investigate the effects of the nozzle geometries as well as inlet conditions on the reaction thrust of water jet in this paper. The experimental results show that: 1) the reaction thrust is proportional to inlet pressure, the square of flow rate and 2/3 power exponent of input power; 2) the diameter of cylinder column for conical nozzle has great influence on the reaction thrust characteristics; 3) the best values of the half cone angle and the cylinder column length exist to make the reaction thrust coefficient to reach the maximum under the same inlet conditions. Those provide a basis for nozzles design and have significant value, especially for developing high performance and efficiency water jet propulsion unit.展开更多
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Ol...The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.展开更多
A large-scale pop-up structure occurs at the front of the northern Dabashan thrust belt (NDTB), bound by the NNE-dipping Chengkou fault to the south, and the SSW-dipping Gaoqiao fault to the north. The pop-up struct...A large-scale pop-up structure occurs at the front of the northern Dabashan thrust belt (NDTB), bound by the NNE-dipping Chengkou fault to the south, and the SSW-dipping Gaoqiao fault to the north. The pop-up structure shows different features along its strike as a direct reflection of the intensity of tectonic" activity. To the northwest, the structure is characterized by a two-directional thrust system forming a positive flower-like structure. In contrast, the southeastern part is composed of the vertical Chengkou fault and a series of N-directed backthrusts, showing a semi-flower-like structure. We present results from Ar-Ar dating of syntectonic microthermal metamorphic sericite which show that the Chengkou fault experienced intense deformation during the mid-Mesozoic Yanshanian epoch (about 143.3 Ma), causing rapid uplift and thrusting of the northern Dabashan thrust belt. During the propagation of this thrust, a series of backthrusts formed because of the obstruction from the frontier of Dabashan thrust belt, leading to the development of the pop-up structure.展开更多
Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thru...Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.展开更多
Recent discoveries of ophiolites indicate that there must be a Palaeotethyan geosuture zone bordering China and Vietnam, which separates the Vietbac block from the South China subcontinent. The Indosinian foreland fol...Recent discoveries of ophiolites indicate that there must be a Palaeotethyan geosuture zone bordering China and Vietnam, which separates the Vietbac block from the South China subcontinent. The Indosinian foreland fold-and-thrust belt bordering Yunnan and Guangxi provided further evidence for the palaeotethysides. The oceanic crust was subducted southwestwards while the magmatic arc migrated northeastwards, and the continent-arc collision occurred in the Late Triassic with the thrusting being extended towards the north or northeast. The features of thrust-nappe structure are discussed, which proved the continental margin of the Palaeotethyan ocean there to be a complicated one. A face-to-face collision occurred first along the NW-striking segment and then along the ENE-striking segment accompanied by transpression or oblique thrusting occurring along the NW-striking one.展开更多
Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system. In this paper, theoretical, numerical and experimental studies were carried out to investigate the effe...Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system. In this paper, theoretical, numerical and experimental studies were carried out to investigate the effects of the nozzle geometry as-well as the inlet conditions on the reaction thrust of water jet. Comparison analyses reveal that the reaction thrust has a direct proportional relationship with the product of the inlet pressure, the square of flow rate and two-thirds power exponent of the input power. The results also indicate that the diameter of the cylinder column for the conical nozzle has great influence on the reaction thrust characteristics. In addition, the best values of the half cone angle and the cylinder column length exist to make the reaction thrust reach its maximum under the same inlet conditions.展开更多
A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding wh...A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding whether to thrust or coast.GA is used to achieve the global time-optimal orbit transfer.The trajectory optimization problem is transformed into the constraint parameter optimization problem,thus the nonlinear two-point boundary value problem is avoided.The refined Q-law method integrated with the fuzzy logic control is adopted for the end course,the vibration is avoided and the high precision is achieved.The numerical simulation of satellite orbit transfer is implemented.Results show that the new method can achieve the time-optimal orbit transfer and the low energy consumption,thus improving the transfer precision.展开更多
This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended met...This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.展开更多
The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thr...The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.展开更多
基金supported by Joint Fund for Equipment Preresearch and Aerospace Science and Technology (No. 6141B061203)。
文摘The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability, low vapor pressure, and ionization potential. The performance of a lowpower iodine-fed Hall thruster matched with a xenon-fed cathode is investigated across a broad range of operation conditions. Regulation of the iodine vapor's mass flow rates is stably achieved by using a temperature control method of the iodine reservoir. The thrust measurements are finished utilizing a thrust target during the tests. Results show that thrust and anode-specific impulse increase approximately linearly with the increasing iodine mass flow rate.At the nominal power of 200 W class, iodine mass flow rates are 0.62 and 0.93 mg/s, thrusts are7.19 and 7.58 m N, anode specific impulses are 1184 and 826 s, anode efficiencies are 20.8%and 14.5%, and thrust to power ratios are 35.9 and 37.9 m N/k W under the conditions of 250 V,0.8 A and 200 V, 1.0 A, respectively. The operating characteristics of iodine-fed Hall thruster are analyzed in different states. Further work on the measurements of plasma characteristics and experimental optimization will be carried out.
基金funded by the Basic Research on National Defense of China(No.JCKY2021603B033),which is gratefully acknowledged。
文摘In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.
基金financially and technically supported by the University of Birjand under Project Number 7912.
文摘The eastern Iranian range,known as the Sistan suture zone in the past,has recently been identified as the Sistan orogen.This Paleogene orogeny is located between the Lut and Afghan microcontinents.The structural analysis shows that most of the thrusts dip towards the NW so that the Permo-Triassic sediments and Jurassic micro-diorites of the Lut Block overthrusted over the younger rocks.Structural studies show that the tectonic vergence was from the NW to the SE of the Sechengi area in the NW part of Sistan orogen.We recognized three deformation phases in eastern Iran.The first N-S deformation event(D1)resulted in the formation of tight E-W folds(F1)and associated cleavages(S1).The second E-W deformation event(D2),which occurred in the late Paleogene led to the bending of older structures,including the axial plane of the first-generation folds giving them a new northwest direction(F2).Additionally,the ramp of the first-phase thrusts(striking E-W)was reactivated,acquiring a new NNW orientation and exhibiting SSE tectonic vergence.The third deformation event(D3)resulted in the formation of NNE and WNW conjugate faults in eastern Iran.Such consecutive deformation events perpendicular to each other are inconsistent with the models of simple linear orogen presented for eastern Iran(i.e.rifting of eastern Iran continental crust and subsequence linear collision)and seem more consistent with the buckling orogeny(Orocline).
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
文摘To reduce thrust ripple and cost and improve the average thrust of permanent magnet linear motors,a modular dual-field modulation permanent magnet linear motor was studied,and the parameters were optimized.First,sensitive parameters were selected using the Taguchi method,and then the optimal variables were sampled using the optimal Latin hypercube experimental design method and an ensemble of surrogates model of optimization objectives,and its accuracy was verified.Next,a multi-objective particle swarm optimization algorithm was used to optimize the purpose of“maximum average thrust and minimum thrust ripple”,and the Pareto front of average thrust and thrust ripple was obtained.Finite element analysis showed that the optimized modular dual flux-modulation permanent magnet linear motor(MDFMPMLM)had a 29.5%reduction in thrust ripple and a 5%increase in average thrust compared to the original motor.This study provided an effective method for improving the performance of permanent magnet linear motors.
文摘The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flow around the airfoil. An efficient framework for implementing the coupled solver and optimization in a multicore environment has been implemented for the generation of optimized solutionsmaximizing thrust performance & computational speed.
文摘The solid rocket motor driven system is one of the common ways for submarines to launch underwater missiles. It has significant advantages in improving the missile’s water exit speed, anti-interference capability, and enemy striking power. The prediction of the underwater loading is a preliminary factor for the power system design of the underwater vehicle. This paper presents a rapid prediction method and validated by the experimental study for the underwater thrust of the solid rocket motor. Based on the potential flow assumption of the water field, a model of the bubble and a one-dimensional quasi-steady model of the nozzle are established to directly solve the flow status of the nozzle. The aerodynamic thrust and hydrodynamic thrust have been calculated and analyzed. The calculation results are within 5% error of the experimental results. Moreover, a design platform to predict the underwater thrust of the solid rocket motor has been developed based on Python and the PyQt library, which shows excellent system adaptability and computational efficiency.
文摘The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.
基金National Natural Science Foundation of China (No.91216201, No.51205403)
文摘The applications of the micro-thrust e r and the challenges of micro-thrust measuring are introduced.The developments in measuring techniques for the micro-thrust are reviewed.Micro-thrust measu rements have previously been made either directly by mounting thrusters to the m easurement system or indirectly by mounting a target in the direct path of the e jected propellant.Several typical direct and indirect thrust-stands are presen ted and discussed in detail to illustrate the principles.Typical calibration me thods are also expounded.Finally,the resolution,uncertainty and thrust range of each thrust-stand are given,which may be helpful for the future thrust stan d design and micro-thrusters research.
基金financially supporting the research under grants No.1212011221111,Sinoprobe-02-01 and 2006DFB21330 respectively
文摘Recent mapping and seismic survey reveal that intensive compression during the Early Cenozoic in the Qiangtang block of the central Tibetan Plateau formed an extensive complex of thrust sheets that moved relatively southward along several generally north-dipping great thrust systems. Those at the borders of the ~450 km wide block show it overrides the Lhasa block to the south and is overridden by the Hohxil-Bayanhar block to the north. The systems are mostly thin-skinned imbricate thrusts with associated folding. The thrust sheets are chiefly floored by Jurassic limestone that apparently slid over Triassic sandstone and shale, which is locally included, and ramped upward and over Paleocene-Eocene red-beds. Some central thrusts scooped deeper and carried up Paleozoic metamorphic rock, Permian carbonate and granite to form a central uplift that divides the Qiangtang block into two parts. These systems and their associated structures are unconformably overlain by little deformed Late Eocene-Oligocene volcanic rock or capped by Miocene lake beds. A thrust system in the northern part of the block, as well as one in the northern part of the adjacent Lhasa block, dip to the south and appear to be due to secondary adjustments within the thrust sheets. The relative southward displacement across this Early Cenozoic mega thrust system is in excess of 150 km in the Qiangtang block, and the average southward slip-rate of the southern Qiangtang thrusts ranged from 5.6 mm to 7.4 mm/a during the Late Eocene-Oligocene. This Early Cenozoic thrusting ended before the Early Miocene and was followed by Late Cenozoic crustal extension and strike-slip faulting within the Qiangtang block. The revelation and understanding of these thrust systems are very important for the evaluation of the petroleum resources of the region.
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical Science Foundation of China(04C52019)~~
文摘In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.
基金supported by the National Natural Science Foundation of China(Grant No.50775081)the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z238)
文摘Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thrust characteristics of water jet for conical nozzles directly determine the speed of autonomous underwater vehicles (AUV). Theoretical, numerical and experimental studies have been, carried out to investigate the effects of the nozzle geometries as well as inlet conditions on the reaction thrust of water jet in this paper. The experimental results show that: 1) the reaction thrust is proportional to inlet pressure, the square of flow rate and 2/3 power exponent of input power; 2) the diameter of cylinder column for conical nozzle has great influence on the reaction thrust characteristics; 3) the best values of the half cone angle and the cylinder column length exist to make the reaction thrust coefficient to reach the maximum under the same inlet conditions. Those provide a basis for nozzles design and have significant value, especially for developing high performance and efficiency water jet propulsion unit.
基金This research received financial supports from the National Natural Science Foundation of China(grant 40172076)the National Major Fundamental Research and Development Project(grant G1999043305)the National Key Project of the Ninth Five—Year Plan(grant 99—1111)
文摘The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
基金supported by NationaI Natural Science Foundation of China(No.40821002)major project of China Petrochemical Corporation(Sinopec Group) for fundamental research(ContinentaI Tectonics and Prospects of Marine Origin Hydrocarbon Resource in The Middle-Upper Yangtze Region, Southern China,No.YPH08001-01)
文摘A large-scale pop-up structure occurs at the front of the northern Dabashan thrust belt (NDTB), bound by the NNE-dipping Chengkou fault to the south, and the SSW-dipping Gaoqiao fault to the north. The pop-up structure shows different features along its strike as a direct reflection of the intensity of tectonic" activity. To the northwest, the structure is characterized by a two-directional thrust system forming a positive flower-like structure. In contrast, the southeastern part is composed of the vertical Chengkou fault and a series of N-directed backthrusts, showing a semi-flower-like structure. We present results from Ar-Ar dating of syntectonic microthermal metamorphic sericite which show that the Chengkou fault experienced intense deformation during the mid-Mesozoic Yanshanian epoch (about 143.3 Ma), causing rapid uplift and thrusting of the northern Dabashan thrust belt. During the propagation of this thrust, a series of backthrusts formed because of the obstruction from the frontier of Dabashan thrust belt, leading to the development of the pop-up structure.
基金Supported by the Natural Science Foundation of China under Grant No.50675162the Program of Introducing Talents of Discipline to Universities under Grant No.B08031the Key Project of Hubei Province Science & Technology Fund under Grant No.2008CAD027
文摘Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.
文摘Recent discoveries of ophiolites indicate that there must be a Palaeotethyan geosuture zone bordering China and Vietnam, which separates the Vietbac block from the South China subcontinent. The Indosinian foreland fold-and-thrust belt bordering Yunnan and Guangxi provided further evidence for the palaeotethysides. The oceanic crust was subducted southwestwards while the magmatic arc migrated northeastwards, and the continent-arc collision occurred in the Late Triassic with the thrusting being extended towards the north or northeast. The features of thrust-nappe structure are discussed, which proved the continental margin of the Palaeotethyan ocean there to be a complicated one. A face-to-face collision occurred first along the NW-striking segment and then along the ENE-striking segment accompanied by transpression or oblique thrusting occurring along the NW-striking one.
基金supported by the National Natural Science Foundation of China (Grant No.50375056)the National High-Technology Research and Development Program of China (Grant No.2006AA09Z238)
文摘Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system. In this paper, theoretical, numerical and experimental studies were carried out to investigate the effects of the nozzle geometry as-well as the inlet conditions on the reaction thrust of water jet. Comparison analyses reveal that the reaction thrust has a direct proportional relationship with the product of the inlet pressure, the square of flow rate and two-thirds power exponent of the input power. The results also indicate that the diameter of the cylinder column for the conical nozzle has great influence on the reaction thrust characteristics. In addition, the best values of the half cone angle and the cylinder column length exist to make the reaction thrust reach its maximum under the same inlet conditions.
基金Supported by the Key Project of Natural Science Foundation of Jiangsu Province(BK2010072)~~
文摘A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding whether to thrust or coast.GA is used to achieve the global time-optimal orbit transfer.The trajectory optimization problem is transformed into the constraint parameter optimization problem,thus the nonlinear two-point boundary value problem is avoided.The refined Q-law method integrated with the fuzzy logic control is adopted for the end course,the vibration is avoided and the high precision is achieved.The numerical simulation of satellite orbit transfer is implemented.Results show that the new method can achieve the time-optimal orbit transfer and the low energy consumption,thus improving the transfer precision.
文摘This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft.
基金the Key Laboratory Funds for Science and Technology on Vacuum Technology and Physics Laboratory(No.HTKJ2022KL510002)the Military Test Instruments Program(No.2006ZCTF0054)。
文摘The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.