期刊文献+
共找到1,566篇文章
< 1 2 79 >
每页显示 20 50 100
基于改进COF-YOLO v8n的油茶果静态与动态检测计数方法 被引量:5
1
作者 王金鹏 何萌 +1 位作者 甄乾广 周宏平 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期193-203,共11页
针对自然环境下油茶果存在严重遮挡、近景色、小目标等现象,使用YOLO网络存在检测精度低、漏检现象严重等问题,提出对YOLO v8n网络进行改进。首先使用MPDIOU作为YOLO v8n的损失函数,有效解决因为果实重叠导致的漏检问题;其次调整网络,... 针对自然环境下油茶果存在严重遮挡、近景色、小目标等现象,使用YOLO网络存在检测精度低、漏检现象严重等问题,提出对YOLO v8n网络进行改进。首先使用MPDIOU作为YOLO v8n的损失函数,有效解决因为果实重叠导致的漏检问题;其次调整网络,向其中加入小目标检测层,使网络能够关注小目标油茶以及被树叶遮挡的油茶;最后使用SCConv作为特征提取网络,既能兼顾检测精度又能兼顾检测速度。改进COF-YOLO v8n网络精确率、召回率、平均精度均值分别达到97.7%、97%、99%,比未改进的YOLO v8n分别提高3.2、4.8、2.4个百分点,其中严重遮挡情况下油茶检测精确率、召回率、平均精度均值分别达到95.9%、95%、98.5%,分别比YOLO v8n提高4.0、9.1、4.6个百分点。因此改进后COF-YOLO v8n网络能够明显提高油茶在严重遮挡、近景色、小目标均存在情况下的识别精度,减小油茶的漏检。此外,模型能够实现动、静态输入条件下油茶果计数。动态计数借鉴DeepSORT算法的多目标跟踪思想,将改进后COF-YOLO v8n的识别输出作为DeepSORT的输入,实现油茶果实的追踪计数。所得改进模型具有很好的鲁棒性,且模型简单可以嵌入到边缘设备中,不仅可用于指导自动化采收,还可用于果园产量估计,为果园物流分配提供可靠借鉴。 展开更多
关键词 油茶果 机器视觉 COF-YOLO v8n 计数 产量估计
下载PDF
基于YOLO v8n-seg和改进Strongsort的多目标小鼠跟踪方法 被引量:4
2
作者 梁秀英 贾学镇 +3 位作者 何磊 王翔宇 刘岩 杨万能 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期295-305,345,共12页
多目标小鼠跟踪是小鼠行为分析的基本任务,是研究社交行为的重要方法。针对传统小鼠跟踪方法存在只能跟踪单只小鼠以及对多目标小鼠跟踪需要对小鼠进行标记从而影响小鼠行为等问题,提出了一种基于实例分割网络YOLO v8n-seg和改进Strongs... 多目标小鼠跟踪是小鼠行为分析的基本任务,是研究社交行为的重要方法。针对传统小鼠跟踪方法存在只能跟踪单只小鼠以及对多目标小鼠跟踪需要对小鼠进行标记从而影响小鼠行为等问题,提出了一种基于实例分割网络YOLO v8n-seg和改进Strongsort相结合的多目标小鼠无标记跟踪方法。使用RGB摄像头采集多目标小鼠的日常行为视频,标注小鼠身体部位分割数据集,对数据集进行增强后训练YOLO v8n-seg实例分割网络,经过测试,模型精确率为97.7%,召回率为98.2%,mAP50为99.2%,单幅图像检测时间为3.5 ms,实现了对小鼠身体部位准确且快速地分割,可以满足Strongsort多目标跟踪算法的检测要求。针对Strongsort算法在多目标小鼠跟踪中存在的跟踪错误问题,对Strongsort做了两点改进:对匹配流程进行改进,将未匹配上目标的轨迹和未匹配上轨迹的目标按欧氏距离进行再次匹配;对卡尔曼滤波进行改进,将卡尔曼滤波中表示小鼠位置和运动状态的小鼠身体轮廓外接矩形框替换为以小鼠身体轮廓质心为中心、对角线为小鼠体宽的正方形框。经测试,改进后Strongsort算法的ID跳变数为14,MOTA为97.698%,IDF1为85.435%,MOTP为75.858%,与原Strongsort相比,ID跳变数减少88%,MOTA提升3.266个百分点,IDF1提升27.778个百分点,与Deepsort、ByteTrack和Ocsort相比,在MOTA和IDF1上均有显著提升,且ID跳变数大幅降低,结果表明改进Strongsort算法可以提高多目标无标记小鼠跟踪的稳定性和准确性,为小鼠社交行为分析提供了一种新的技术途径。 展开更多
关键词 小鼠行为 多目标跟踪 YOLO v8n-seg Strongsort
下载PDF
基于改进YOLO v8s的小麦小穗赤霉病检测研究 被引量:2
3
作者 时雷 杨程凯 +4 位作者 雷镜楷 刘志浩 王健 席磊 熊蜀峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第7期280-289,共10页
为实现大田复杂背景下小麦小穗赤霉病快速准确识别,构建了包含冬小麦开花期、灌浆期和成熟期3个生育期共计640幅的小麦赤霉病图像数据集,并提出一种基于改进YOLO v8s的小麦小穗赤霉病识别方法。首先,利用全维动态卷积ODConv替换主干网... 为实现大田复杂背景下小麦小穗赤霉病快速准确识别,构建了包含冬小麦开花期、灌浆期和成熟期3个生育期共计640幅的小麦赤霉病图像数据集,并提出一种基于改进YOLO v8s的小麦小穗赤霉病识别方法。首先,利用全维动态卷积ODConv替换主干网络中的标准Conv,提高网络对目标区域特征的提取;然后,在Neck网络使用改进Efficient RepGFPN特征融合网络实现低层特征与高层语义信息的融合,使模型能够提取更丰富的特征信息;最后,采用EIoU损失函数替换CIoU损失函数,加快模型收敛速度,进一步提高模型准确率,实现对小麦小穗赤霉病的快速、准确识别。在自建的数据集上进行模型验证,结果表明,改进模型(OCE-YOLO v8s)对小麦小穗赤霉病的检测精度达到98.3%,相比原模型提高2个百分点;与Faster R-CNN、CenterNet、YOLO v5s、YOLO v6s、YOLO v7模型相比分别提高36、25.7、2.1、2.6、3.9个百分点。提出的OCE-YOLO v8s模型能有效实现小麦小穗赤霉病精确检测,可为大田环境下农作物病虫害实时监测提供参考。 展开更多
关键词 小麦赤霉病 目标检测 YOLO v8 全维动态卷积 Neck网络 EIoU
下载PDF
柑橘木虱YOLO v8-MC识别算法与虫情远程监测系统研究 被引量:2
4
作者 李善军 梁千月 +3 位作者 余勇华 陈耀晖 付慧敏 张宏宇 《农业机械学报》 EI CAS CSCD 北大核心 2024年第6期210-218,共9页
柑橘木虱是黄龙病的主要传播媒介,其发生与活动可对柑橘果园造成毁灭性后果。为实现木虱虫情的高效监测,设计了一种集诱捕拍照、耗材更新、害虫识别与结果展示于一体的智能监测系统。设计了具备诱虫胶带自动更新、虫情图像实时获取功能... 柑橘木虱是黄龙病的主要传播媒介,其发生与活动可对柑橘果园造成毁灭性后果。为实现木虱虫情的高效监测,设计了一种集诱捕拍照、耗材更新、害虫识别与结果展示于一体的智能监测系统。设计了具备诱虫胶带自动更新、虫情图像实时获取功能的诱捕监测装置;应用选点裁剪、Mosaic数据增强(Mosaic data augmentation,MDA)和CA(Coordinate attention)注意力机制,改进了YOLO v8木虱识别模型;开发了Web和手机APP客户端,可实现虫情数据的可视化展示与远程控制。模型测试阶段,改进后的YOLO v8-MC召回率、F1值及精确率分别达到91.20%、91%、90.60%,较基准模型分别提升5.47、5、4.64个百分点;迁移试验中,模型召回率、F1值及精确率分别达到88.64%、87%、84.78%,且系统工作状态良好,满足野外使用需求。开发的智能监测系统能有效实现果园木虱虫情的远程监测,可为此类虫害防治管理提供有效手段。 展开更多
关键词 柑橘木虱 虫害监测 诱捕监测装置 YOLO v8-MC
下载PDF
基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法
5
作者 卢鹏 孙天文 +2 位作者 陈明 王振华 郑宗生 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期154-159,319,共7页
植株表型参数是描述植物形态、结构和生理特征的定量化指标,可揭示植物生长规律,以及与环境因素之间的关系。现有的人工测量和激光雷达点云植株表型参数提取方法存在数据误差大、易损伤植株、成本高和数据量大等问题。为此,本文提出了... 植株表型参数是描述植物形态、结构和生理特征的定量化指标,可揭示植物生长规律,以及与环境因素之间的关系。现有的人工测量和激光雷达点云植株表型参数提取方法存在数据误差大、易损伤植株、成本高和数据量大等问题。为此,本文提出了一种基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法,利用双重注意力机制CBAM改进YOLO v8,提高模型特征提取能力,对红掌植株叶片进行检测与分割;通过Grabcut算法去除分割后图像背景区域特征,并利用VGG模型对其进行分类,分出完整型红掌植株叶片和缺失型红掌植株叶片;在CycleGAN的生成器中引入双重注意力机制和特征金字塔,提高模型多尺度特征的提取能力,引入SmoohL1损失函数,提升模型稳定性,对缺失型红掌植株叶片进行修复;提出一种表型参数提取算法(Phenotypic parameters extraction algorithms,PPEA),实现对红掌植株叶长、叶宽和叶面积的自动提取。以650幅自建数据集为例,对上述方法进行了比较与分析,实验结果证明,本文方法在红掌植株表型参数自动提取方面具有良好的效果。 展开更多
关键词 表型参数提取 红掌 目标检测 图像修复 YOLO v8 CycleGAN
下载PDF
基于改进YOLO v8n模型的散养蛋鸡个体行为识别方法与差异分析
6
作者 杨断利 齐俊林 +2 位作者 陈辉 高媛 王连增 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期112-123,共12页
家禽行为与其生理状态密切相关,可利用行为数据对家禽健康状况进行评估。统计个体行为数据需要进行蛋鸡行为识别和个体身份识别,针对行为识别过程中,蛋鸡体型小、聚集遮挡,养殖环境光照变化等因素导致的蛋鸡有效特征表达不足,个体行为... 家禽行为与其生理状态密切相关,可利用行为数据对家禽健康状况进行评估。统计个体行为数据需要进行蛋鸡行为识别和个体身份识别,针对行为识别过程中,蛋鸡体型小、聚集遮挡,养殖环境光照变化等因素导致的蛋鸡有效特征表达不足,个体行为识别效果不理想问题,基于YOLO v8n网络构建行为识别模型,同时融合ODConv、GhostBottleneck、GAM注意力和Inner-IoU结构,通过减少图像特征丢失,放大全局交互信息,融合跨阶段特征,增强特征提取及泛化能力对模型进行改进,提升了蛋鸡采食、饮水、站立、整理羽毛、俯身搜索5种行为的识别精度。同时基于YOLO v8n模型构建了个体身份识别网络,并通过引入MobileNetV3模块对个体身份识别网络模型进行优化,提升了个体行为数据统计效率。试验结果表明,优化后行为识别模型对采食、饮水、站立、整理羽毛、俯身搜索行为识别平均精度(AP)分别达到94.4%、93.0%、90.7%、91.7%、86.9%,平均精度均值(mAP)达到91.4%,与YOLO v5n、YOLO v6n、YOLO v7-tiny、YOLO v8n相比,平均精度均值(mAP)分别提高4.8、4.1、5.5、3.5个百分点;个体身份识别模型参数量和运算量与YOLO v8n模型相比,减少1.965 1×10^(6)和6.1×10^(9)。通过分析蛋鸡行为数据发现,行为数据与温度及蛋鸡个体本身有关,温度降低时,采食、站立次数增加,饮水次数减少,整理羽毛、俯身搜索次数几乎无变化,相同温度下,不同蛋鸡个体的行为数据差异较大,且差异值与蛋鸡体型有关。试验结果为依据行为数据评判蛋鸡健康状况、养殖场精准养殖及蛋鸡个体优选奠定了基础。 展开更多
关键词 散养蛋鸡 行为识别 YOLO v8n 多目标识别 MobileNetV3 ODConv
下载PDF
基于改进YOLO v8n-seg的羊只实例分割方法
7
作者 王福顺 王旺 +2 位作者 孙小华 王超 袁万哲 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期322-332,共11页
羊只实例分割是实现羊只识别和跟踪、行为分析和管理、疾病监测等任务的重要前提。针对规模化羊场复杂养殖环境中,羊只个体存在遮挡、光线昏暗、个体颜色与背景相似等情况所导致的羊只实例错检、漏检问题,提出了一种基于改进YOLO v8n-se... 羊只实例分割是实现羊只识别和跟踪、行为分析和管理、疾病监测等任务的重要前提。针对规模化羊场复杂养殖环境中,羊只个体存在遮挡、光线昏暗、个体颜色与背景相似等情况所导致的羊只实例错检、漏检问题,提出了一种基于改进YOLO v8n-seg的羊只实例分割方法。以YOLO v8n-seg网络作为基础模型进行羊只个体分割任务,首先,引入Large separable kernel attention模块以增强模型对实例重要特征信息的捕捉能力,提高特征的代表性及模型的鲁棒性;其次,采用超实时语义分割模型DWR-Seg中的Dilation-wise residual模块替换C2f中的Bottleneck模块,以优化模型对网络高层特征的提取能力,扩展模型感受野,增强上下文语义之间的联系,生成带有丰富特征信息的新特征图;最后,引用Dilated reparam block模块对C2f进行二次改进,多次融合从网络高层提取到的特征信息,增强模型对特征的理解能力。试验结果表明,改进后的YOLO v8n-LDD-seg对羊只实例的平均分割精度mAP_(50)达到92.08%,mAP_(50:90)达到66.54%,相较于YOLO v8n-seg,分别提升3.06、3.96个百分点。YOLO v8n-LDD-seg有效提高了羊只个体检测精度,提升了羊只实例分割效果,为复杂养殖环境下羊只实例检测和分割提供了技术支持。 展开更多
关键词 羊只 个体检测 实例分割 改进YOLO v8n-LDD-seg网络
下载PDF
基于YOLO v8-GSGF模型的葡萄病害识别方法研究
8
作者 张惠莉 代晨龙 +3 位作者 任景龙 王光远 滕飞 王东伟 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期75-83,共9页
为进一步提高葡萄病害识别精度及速度,本文对YOLO v8模型进行了改进。首先,引入GhostNetV2主干特征提取网络,提高模型特征提取能力和识别性能。其次,嵌入SPPFCSPC金字塔池化,在保持感受野不变的情况下取得速度上的提升。再次,添加GAM-At... 为进一步提高葡萄病害识别精度及速度,本文对YOLO v8模型进行了改进。首先,引入GhostNetV2主干特征提取网络,提高模型特征提取能力和识别性能。其次,嵌入SPPFCSPC金字塔池化,在保持感受野不变的情况下取得速度上的提升。再次,添加GAM-Attention注意力机制,减小信息缩减并放大特征信息,加快识别速度。最后,使用Focal-EIoU作为损失函数,使检测模型边界框回归性能得到提升,最终形成葡萄叶片病害识别模型YOLO v8-GSGF(YOLO v8+GhostNetV2+SPPFCSPC+GAM-Attention+Focal-EIoU)。经识别试验验证,YOLO v8-GSGF模型识别精度可达97.1%,推理时间为45.3 ms,对各葡萄病害都能做到高精度识别。消融试验结果表明,各项改进均对模型识别性能有提升效果,其中,GhostNetV2主干网络对模型提升效果最为明显。YOLO v8-GSGF模型在消融试验中识别精度可达98.2%及推理时间为43.7 ms,与原YOLO v8模型相比提升8.6个百分点及20.4 ms,改进效果明显,可视化图更加直观地证明YOLO v8-GSGF模型可靠以及性能优越。与目前主流识别模型相比,YOLO v8-GSGF模型有更好的表现,识别精度和速度都更优,曲线图也直观地表明YOLO v8-GSGF模型性能优越,改进效果显著,能够满足葡萄果园病害识别的需求。 展开更多
关键词 葡萄叶片 病害 图像识别 GhostNetV2 YOLO v8
下载PDF
基于轻量化YOLO v8s-GD的自然环境下百香果快速检测模型
9
作者 罗志聪 何陈涛 +2 位作者 陈登捷 李鹏博 孙奇燕 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期291-300,共10页
为了提高百香果检测精度,并将深度学习模型部署在移动平台上,实现快速实时推理,本文提出一种基于改进YOLO v8s的轻量化百香果检测模型(YOLO v8s-GD)。使用聚集和分发机制(GD)替换颈部特征融合网络,提高模型对百香果图像特征信息跨层融... 为了提高百香果检测精度,并将深度学习模型部署在移动平台上,实现快速实时推理,本文提出一种基于改进YOLO v8s的轻量化百香果检测模型(YOLO v8s-GD)。使用聚集和分发机制(GD)替换颈部特征融合网络,提高模型对百香果图像特征信息跨层融合能力和模型泛化能力;通过基于层自适应幅度的剪枝(LAMP)修剪模型,损失一定精度换取减小模型体积,减少模型参数量,以实现在嵌入式设备上快速检测;运用知识蒸馏学习策略弥补因剪枝而损失的检测精度,提高模型检测性能。实验结果表明,对于自然环境下采集的百香果数据集,改进后模型参数量和内存占用量相比原YOLO v8s基线模型分别降低63.88%和62.10%,精确率(Precision)和平均精度(AP)相较于原模型分别提高0.9、2.3个百分点,优于其他对比模型。在Jetson Nano和Jetson Tx2嵌入式设备上实时检测帧率(FPS)分别为5.78、19.38 f/s,为原模型的1.93、1.24倍。因此,本文提出的改进后模型能够有效检测复杂环境下百香果目标,为实际场景中百香果自动采摘等移动端检测设备部署和应用提供理论和技术支持。 展开更多
关键词 百香果 YOLO v8s 轻量化 检测模型 聚集和分发机制
下载PDF
基于EP-YOLO v8的瓶栽金针菇最优抓取位置定位方法
10
作者 叶大鹏 景均 +2 位作者 吴昊宇 李辉煌 谢立敏 《农业机械学报》 EI CAS CSCD 北大核心 2024年第10期51-61,共11页
针对工厂化瓶栽金针菇自动切根过程中,夹持末端因结构设计导致行程固定,进而影响抓取效果甚至切根质量的问题,本文基于YOLO v8(You only look once)构建改进的Enoki-pick_region-YOLO v8(EP-YOLO v8),实现瓶栽金针菇整体及最佳受力区域... 针对工厂化瓶栽金针菇自动切根过程中,夹持末端因结构设计导致行程固定,进而影响抓取效果甚至切根质量的问题,本文基于YOLO v8(You only look once)构建改进的Enoki-pick_region-YOLO v8(EP-YOLO v8),实现瓶栽金针菇整体及最佳受力区域(关键抓取区域)的精准定位与轮廓提取,保障抓取参数的可靠性。该方法在网络优化基础上,基于最小欧几里得距离(Euclidean distance,ED)构建掩膜关系归属与判断模型,明确金针菇菇体与关键抓取区域掩膜间父子关系并合并优化。通过解析合并前后关键抓取区域的相对位置编码,确定抓取参数并进行坐标转换,为建立末端控制映射模型实现末端机械手运动行程的精确控制提供基础。实验结果表明,本文所提算法的金针菇菇体掩膜识别精确率达99.3%,关键抓取区域掩膜识别精确率达99.6%。同时,对比发现掩膜质量得到了提高,获取的参数抓取区域宽度与实际宽度之间的误差仅为0.7%,抓取参数基本满足抓取条件,能有效实现最优抓取位置的精准识别与定位。 展开更多
关键词 瓶栽金针菇 采摘点 采摘机器人 YOLO v8 多目标识别
下载PDF
基于SAW-YOLO v8n的葡萄幼果轻量化检测方法
11
作者 张传栋 高鹏 +1 位作者 亓璐 丁华立 《农业机械学报》 EI CAS CSCD 北大核心 2024年第10期286-294,共9页
葡萄簇幼果果实受背景色、遮挡和光照变化的影响,检测难度大。为了实现对背景色、遮挡和光照变化具有鲁棒性的葡萄簇幼果检测,提出了一种融合随机注意力机制(Shuffle attention,SA)的改进YOLO v8n模型(SAW-YOLO v8n)。通过在YOLO v8n模... 葡萄簇幼果果实受背景色、遮挡和光照变化的影响,检测难度大。为了实现对背景色、遮挡和光照变化具有鲁棒性的葡萄簇幼果检测,提出了一种融合随机注意力机制(Shuffle attention,SA)的改进YOLO v8n模型(SAW-YOLO v8n)。通过在YOLO v8n模型的Neck结构中融入SA机制,增强网络多尺度特征融合能力,提升检测目标的特征信息表示,并抑制其他无关信息,提高检测网络检测精度,在不明显增加网络深度和内存开销的情况下,实现了葡萄簇幼果的高效准确检测;采用基于动态非单调聚焦机制的损失(Wise intersection over union loss,Wise-IoU Loss)作为边界框回归损失函数,加速网络收敛并进一步提高模型的准确率。构建了葡萄簇幼果的数据集GGrape,该数据集由3780幅复杂场景下的葡萄簇幼果图像及对应标注文件组成。通过该数据集对SAW-YOLO v8n模型进行训练和测试。测试结果表明,基于SAW-YOLO v8n的葡萄簇幼果检测算法的精度(Precision,P)、召回率(Recall,R)、平均精度均值(Mean average precision,mAP)和F1值分别为92.80%、91.30%、96.10%和92.04%,检测速度为140.85 f/s,模型内存占用量为6.20 MB。与SSD、YOLO v5s、YOLO v6n、YOLO v7-tiny、YOLO v8n等5个轻量化模型相比,其mAP值分别提高16.06%、1.05%、1.48%、0.84%、0.73%,F1值分别提高24.85%、1.43%、1.43%、1.09%、1.60%,模型内存占用量分别降低93.16%、56.94%、37.63%、47.00%、0,是所有模型中最小的,具有明显的轻量化、高精度优势。讨论了不同遮挡程度和光照条件的葡萄幼果检测,结果表明,基于SAW-YOLO v8n的葡萄幼果检测方法能适应不同遮挡和光照变化,具有良好的鲁棒性。结果表明,SAW-YOLO v8n不仅能满足对葡萄簇幼果检测的高精度、高速度、轻量化的要求,且具有较强的鲁棒性和实时性。 展开更多
关键词 葡萄幼果 疏果 目标检测 shuffle attention YOLO v8n Wise-IoU Loss
下载PDF
基于改进YOLO v8n的玉米田间杂草检测网络
12
作者 亢洁 代鑫 +2 位作者 刘文波 徐婷 夏宇 《江苏农业科学》 北大核心 2024年第20期165-172,共8页
针对3~5叶期玉米田间伴生杂草目标尺度小、玉米叶片遮挡严重、田间自然环境复杂等导致检测精度不高的问题,提出了一种基于改进YOLO v8n的玉米田间杂草检测算法。首先下载涵盖了黑麦草、芥菜、甘菊、藜麦等常见伴生杂草和玉米幼苗的图像... 针对3~5叶期玉米田间伴生杂草目标尺度小、玉米叶片遮挡严重、田间自然环境复杂等导致检测精度不高的问题,提出了一种基于改进YOLO v8n的玉米田间杂草检测算法。首先下载涵盖了黑麦草、芥菜、甘菊、藜麦等常见伴生杂草和玉米幼苗的图像,对图像进行翻转等数据增强方式增加样本多样性,提升模型识别和泛化能力。其次在YOLO v8n网络基础上,重新构建了轻量级跨尺度特征融合网络,增强模型多尺度特征融合能力,并输出一个针对小目标杂草的预测层,提升网络的检测精度。最后,在4个目标检测头前嵌入高效多尺度注意力机制EMA,使得检测头更加专注于目标区域。试验结果表明,本模型的平均精度均值提升了2.4百分点、杂草的平均精度提升了5.1百分点,模型内存用量和参数量分别减小了22.6%和26.0%;本模型与SSD-MobileNet v2、Efficientdet-D0及YOLO系列目标检测模型相比,平均精度均值至少提升了1.8百分点、识别杂草的平均精度至少提升了4.6百分点,并且模型内存用量和参数量都处在较低水平。本研究提出的玉米田间杂草检测模型在降低了模型内存用量和参数量的同时提高了检测精度,可为精准除草设备提供技术支持。 展开更多
关键词 玉米田 杂草 目标检测 YOLO v8n EMA注意力机制
下载PDF
基于改进可变形卷积的FDC-YOLO v8水下生物目标检测方法研究
13
作者 袁红春 李春桥 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期140-146,共7页
水下生物目标检测是实现水下机器人自动化捕捞的关键性技术。针对水下生物目标检测任务中存在的目标重叠、遮挡以及目标尺度小而导致的误检、漏检等问题,提出了一种基于改进YOLO v8n的水下生物目标检测算法FDC-YOLO v8。首先,在主干网... 水下生物目标检测是实现水下机器人自动化捕捞的关键性技术。针对水下生物目标检测任务中存在的目标重叠、遮挡以及目标尺度小而导致的误检、漏检等问题,提出了一种基于改进YOLO v8n的水下生物目标检测算法FDC-YOLO v8。首先,在主干网络中使用融合可变形卷积网络的FDC模块,以增强模型特征提取能力,提升其提取特征的丰富度。其次,引入融合分数阶傅里叶变换和空间注意力机制的FrSAConv模块,进一步分离多样目标特征,增强模型对多种特征的感知能力。最后,引入Wise-IoU损失函数作为模型边界框损失函数,以更好地解决目标不平衡以及尺度差异的问题。使用RUIE数据集进行实验,水下生物包括海胆、海星、海参、扇贝。实验结果表明,改进后的FDC-YOLO v8的平均精度均值达到85.3%,较基准模型提升2.6个百分点,推理速度达到769 f/s,在目标重叠、遮挡以及小尺度目标的水下生物目标检测中有更好的表现。 展开更多
关键词 水下生物识别 目标检测 YOLO v8n Wise-IoU 可变形卷积网络 分数阶傅里叶变换
下载PDF
基于改进YOLO v8s的羊只行为识别方法 被引量:3
14
作者 王旺 王福顺 +4 位作者 张伟进 刘红达 王晨 王超 何振学 《农业机械学报》 EI CAS CSCD 北大核心 2024年第7期325-335,344,共12页
羊只站立、行走、采食等日常行为与其健康状况密切相关,高效、准确的羊只行为识别有助于疾病检测,对实现羊只健康预警具有重要意义。针对目前羊只多行为识别检测大多基于传感器等接触式设备,羊只活动受限,行为具有局限性,且群体养殖环境... 羊只站立、行走、采食等日常行为与其健康状况密切相关,高效、准确的羊只行为识别有助于疾病检测,对实现羊只健康预警具有重要意义。针对目前羊只多行为识别检测大多基于传感器等接触式设备,羊只活动受限,行为具有局限性,且群体养殖环境下,羊只行为多样、场景复杂、存在遮挡等造成的行为识别精度低等问题,提出了一种基于改进YOLO v8s的羊只行为识别方法。首先,引入SPPCSPC空间金字塔结构增强了模型的特征提取能力,提升了模型的检测精度。其次,新增P2小目标检测层,增强了模型对小目标的识别和定位能力。最后,引入多尺度轻量化模块PConv和EMSConv,在保证模型识别效果的同时,降低了模型参数量和计算量,实现了模型轻量化。实验结果表明,改进YOLO v8s模型对羊只站立、行走、采食、饮水、趴卧行为平均识别精度分别为84.62%、92.58%、87.54%、98.13%和87.18%,整体平均识别精度为90.01%。与Faster R-CNN、YOLO v5s、YOLO v7、YOLO v8s模型相比,平均识别精度分别提高12.03、3.95、1.46、2.19个百分点。研究成果可为羊只健康管理和疾病预警提供技术支撑。 展开更多
关键词 行为识别 YOLO v8s 轻量化
下载PDF
基于改进YOLO v8的牛只行为识别与跟踪方法 被引量:2
15
作者 付辰伏 任力生 王芳 《农业机械学报》 EI CAS CSCD 北大核心 2024年第5期290-301,共12页
随着我国畜牧业的快速发展,牛只养殖由分散性养殖逐渐向精准化养殖转变。针对分散养殖中农户无法对每头牛只健康状况给予足够关注的问题,通过分析牛只行为模式结合视觉方向特征,设计了综合管理方法来准确识别和跟踪牛只行为。首先,采用... 随着我国畜牧业的快速发展,牛只养殖由分散性养殖逐渐向精准化养殖转变。针对分散养殖中农户无法对每头牛只健康状况给予足够关注的问题,通过分析牛只行为模式结合视觉方向特征,设计了综合管理方法来准确识别和跟踪牛只行为。首先,采用改进YOLO v8算法对牛只进行目标监测,其中,在Backbone和Neck端使用C2f-faster结构,增强模型特征提取能力;引入上采样算子CARAFE,拓宽感受视野进行数据特征融合;针对牛只幼仔检测加入BiFormer注意力机制,以识别牛只小面积特征;更换动态目标检测头DyHead,融合尺度、空间和任务感知;然后,使用Focal SIoU函数,解决正负样本分配不均衡和CIoU局限性的问题。最后,将YOLO v8检测到的行为类别信息引入BoTSORT算法中,实现在复杂场景下牛只多目标行为识别跟踪。实验结果表明,提出的FBCD-YOLO v8n(FasterNet、BiFormer、CARAFE、DyHead)模型在牛只行为数据集上,相比较YOLO v5n、YOLO v7tiny和原YOLO v8n模型的mAP@0.5分别提升3.4、3.1、2.4个百分点,尤其牛只回舔行为识别平均精度提高7.4个百分点。跟踪方面,BoTSORT算法的MOTA为96.1%,MOTP为78.6%,IDF1为98.0%,HOTA为78.9%;与ByteTrack、StrongSORT算法比,MOTA和IDF1显著提升,跟踪效果良好。研究表明,在牛舍养殖环境下,本研究构建的多目标牛只行为识别跟踪系统,可有效帮助农户监测牛只行为,为牛只的自动化精准养殖提供技术支持。 展开更多
关键词 牛只 目标监测 行为识别 多目标跟踪 YOLO v8 BoTSORT
下载PDF
基于YOLO v8n-seg-FCA-BiFPN的奶牛身体分割方法 被引量:5
16
作者 张姝瑾 许兴时 +2 位作者 邓洪兴 温毓晨 宋怀波 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期282-289,391,共9页
奶牛身体部位的精准分割广泛应用于奶牛体况评分、姿态检测、行为分析及体尺测量等领域。受奶牛表面污渍和遮挡等因素的影响,现有奶牛部位精准分割方法实用性较差。本研究在YOLO v8n-seg模型的基础上,加入多尺度融合模块与双向跨尺度加... 奶牛身体部位的精准分割广泛应用于奶牛体况评分、姿态检测、行为分析及体尺测量等领域。受奶牛表面污渍和遮挡等因素的影响,现有奶牛部位精准分割方法实用性较差。本研究在YOLO v8n-seg模型的基础上,加入多尺度融合模块与双向跨尺度加权特征金字塔结构,提出了YOLO v8n-seg-FCA-BiFPN奶牛身体部位分割模型。其中,多尺度融合模块使模型更好地提取小目标几何特征信息,双向跨尺度加权特征金字塔结构实现了更高层次的特征融合。首先在奶牛运动通道处采集奶牛侧面图像作为数据集,为保证数据集质量,采用结构相似性算法剔除相似图像,共得到1 452幅图像。然后对目标奶牛的前肢、后肢、乳房、尾部、腹部、头部、颈部和躯干8个部位进行标注并输入模型训练。测试结果表明,模型精确率为96.6%,召回率为94.6%,平均精度均值为97.1%,参数量为3.3×10^(6),检测速度为6.2 f/s。各部位精确率在90.3%~98.2%之间,平均精度均值为96.3%。与原始YOLO v8n-seg相比,YOLO v8n-seg-FCA-BiFPN的精确率提高3.2个百分点,召回率提高2.6个百分点,平均精度均值提高3.1个百分点,改进后的模型在参数量基本保持不变的情况下具有更强的鲁棒性。遮挡情况下该模型检测结果表明,精确率为93.8%,召回率为91.67%,平均精度均值为93.15%。结果表明,YOLO v8n-seg-FCA-BiFPN网络可以准确、快速地实现奶牛身体部位精准分割。 展开更多
关键词 奶牛 身体部位分割 语义分割 FCABasicBlock BiFPN YOLO v8n
下载PDF
基于FSLYOLO v8n的玉米籽粒收获质量在线检测方法研究
17
作者 张蔚然 杜岳峰 +3 位作者 栗晓宇 刘磊 王林泽 吴志康 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期253-265,共13页
玉米籽粒破碎率和含杂率是评价玉米收获质量的关键指标。针对当前玉米籽粒直收机缺少适用于复杂田间作业环境的收获质量在线检测方法的问题,提出一种适用于小目标、多数量检测目标的玉米籽粒破碎率、含杂率轻量化检测方法。首先,根据图... 玉米籽粒破碎率和含杂率是评价玉米收获质量的关键指标。针对当前玉米籽粒直收机缺少适用于复杂田间作业环境的收获质量在线检测方法的问题,提出一种适用于小目标、多数量检测目标的玉米籽粒破碎率、含杂率轻量化检测方法。首先,根据图像中完整籽粒、破碎籽粒、玉米芯和玉米叶个体数量与个体质量的关系建立数量-质量回归模型,提出了籽粒破碎率和含杂率评估方法。其次,针对籽粒及杂质大小相近,检测物数量多,检测物面积小的特点,提出一种改进的FSLYOLO v8n算法。算法通过FasterBlock模块和无参数注意力机制SimAM改进主干网络结构,并通过使用共享卷积结合Scale模块对检测头进行改进。此外,使用SlidLoss函数替代YOLO v8n的原类别分类损失函数。FSLYOLO v8n模型的mAP@50为97.46%、帧速率为186.4 f/s,与YOLO v8n相比提高6.35%和45 f/s,且网络参数量、浮点运算量分别压缩到YOLO v8n的66.50%、64.63%,模型内存占用量仅为4.0 MB,其性能优于目前常用的轻量化模型。台架试验结果表明,提出的检测方法能够精准检测玉米籽粒破碎和含杂情况,检测准确率高达95.33%和96.15%。将改进后的模型部署在Jetson TX2开发板上,配合检测装置安装到玉米联合收获机上开展田间试验,结果表明,模型能够精准区分籽粒和杂质,满足田间工作需求。 展开更多
关键词 玉米 籽粒直收 破碎率 含杂率 在线检测 FSLYOLO v8n
下载PDF
基于YOLO v8-Tea的茶叶病害检测方法
18
作者 贾瀛睿 龙阳 +2 位作者 胡蓉华 崔艳荣 桂余鹏 《江苏农业科学》 北大核心 2024年第15期213-221,共9页
针对真实场景下复杂的茶叶病害特征检测准确率低、误检率和漏检率高,以及难以进行移动设备上部署等问题,提出一种基于YOLO v8-Tea的茶叶病害检测算法。该算法是在YOLO v8的基础上做的改进,首先,替换了C2f中的Bottleneck,采用FasterBloc... 针对真实场景下复杂的茶叶病害特征检测准确率低、误检率和漏检率高,以及难以进行移动设备上部署等问题,提出一种基于YOLO v8-Tea的茶叶病害检测算法。该算法是在YOLO v8的基础上做的改进,首先,替换了C2f中的Bottleneck,采用FasterBlock来减少参数量和计算量。同时,引入了多尺度注意力EMA模块,以增强全局上下文信息的获取。最后,采用BiFPN模块,以更好地融合多尺度特征,并改进了颈部网络,以提高检测精度。结果表明,YOLO v8-Tea算法在平均精度方面比传统YOLO v8n提高了5.7百分点,从而能更准确地检测复杂的茶叶病害特征。与此同时,模型的参数量和计算量分别减少了47.9%和28.4%,模型的权重文件的大小减小了45.2%,仅为3.4 M。YOLO vs-Tea算法的平均精度比经典的YOLO系列算法中的YOLO v4-tiny、YOLO v5n、YOLO v6n、YOLO v7-tiny分别提高24.6、6.8、5.5、2.5百分点。这些改进使得本研究算法更适合茶叶病害检测任务以及在移动设备中的高效部署。该算法在茶叶病害检测方面取得了显著的性能提升。通过降低参数量和计算量以及优化模型的部署,为实际农业场景中的茶叶病害检测提供了一个更可行的解决方案,为茶叶产业提供了有前景的技术,可以提高茶叶病害检测的效率和准确性。 展开更多
关键词 茶叶病害 检测 YOLO v8-Tea FasterBlock EMA BiFPN
下载PDF
基于可变形卷积网络和YOLOv8的衬砌裂缝检测模型研究
19
作者 孙己龙 刘勇 +3 位作者 路鑫 王志丰 王亚琼 侯小龙 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第8期181-189,共9页
为解决裂缝性状发育随机度高、标注框分辨率低、分布密集易重叠、目标相对小等因素引起的智能检测精度及效率差等问题,基于改进可变形卷积神经网络对YOLOv8骨干网络进行融合,提出1种能够适应隧道复杂场景的裂缝检测模型D-YOLO。模型首... 为解决裂缝性状发育随机度高、标注框分辨率低、分布密集易重叠、目标相对小等因素引起的智能检测精度及效率差等问题,基于改进可变形卷积神经网络对YOLOv8骨干网络进行融合,提出1种能够适应隧道复杂场景的裂缝检测模型D-YOLO。模型首先对第3版可变形卷积网络(DCNv3)的空间聚合权重softmax归一化步骤进行去除以增强网络卷积效率,再利用新DCNv4对骨干网络C2f卷积模块进行融合以提升对网络图像中不同尺度裂缝性状及空间位置变化的细节感知能力,并采用自建裂缝数据集对SSD,Faster-RCNN,YOLOv5和YOLOv84种检测模型进行对比验证。研究结果表明:D-YOLO的F_(1)分数为80.82%,mAP@0.5为86.90%,相较于SSD、Faster-RCNN、YOLOv5和YOLOv8都有所提升;D-YOLO的单张图像检测速度为20.36 ms,相较于各种对比模型分别加快37.06%、65.33%、45.22%和28.39%;同时,D-YOLO对衬砌裂缝图像特征关注范围有所增加。研究结果可为隧道运营期内衬砌安全检测提供新思路。 展开更多
关键词 隧道工程 结构安全 可变形卷积网络 衬砌裂缝 YOLOv8
下载PDF
基于轻量化YOLO v8-Rice的水稻虫害检测方法
20
作者 桂余鹏 胡蓉华 +1 位作者 崔艳荣 贾瀛睿 《江苏农业科学》 北大核心 2024年第20期277-284,共8页
针对真实场景下水稻虫害识别的背景复杂、模型计算量和参数量大以及难以在嵌入式设备或移动设备上部署等问题,在YOLO v8的基础上提出一种改进的轻量化的YOLO v8-Rice水稻虫害检测算法。首先,采用Context Guided Block结构替换传统YOLO v... 针对真实场景下水稻虫害识别的背景复杂、模型计算量和参数量大以及难以在嵌入式设备或移动设备上部署等问题,在YOLO v8的基础上提出一种改进的轻量化的YOLO v8-Rice水稻虫害检测算法。首先,采用Context Guided Block结构替换传统YOLO v8中C2f模块的Bottleneck结构,增强模型的上下文信息理解能力,压缩模型的权重;然后,使用深度可分离卷积代替传统YOLO v8中的标准卷积,以降低参数量、计算量;最后,将检测头重构为轻量级共享卷积检测头,以进一步降低参数量、计算量,并提高模型对多尺度虫害特征的定位和提取能力,使其能够更好地适应不同尺寸、复杂度的虫害状况。结果表明,相比于传统YOLO v8,YOLO v8-Rice算法在计算量、参数量方面分别减小70.5%、61.7%,模型的权重文件大小降低至1.94 MB,仅为YOLO v8n的32.4%,并且在平均精度上达到94.1%,与其他模型相比明显提高。该算法在水稻虫害检测方面的性能取得了显著提升。借助轻量化网络模型及优化模型的部署,使其更适合在移动设备或嵌入式设备中部署,可为实际农业场景中的水稻虫害检测提供更可行的解决方案,可以准确地检测定位和分类水稻虫害。 展开更多
关键词 水稻虫害检测 轻量化YOLO v8-Rice Context Guided Block 深度可分离卷积 轻量级共享卷积检测头
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部