1 Results Lithium ion batteries have been widely used in modern portable electronics,such as cellular phones and notebook computers,because of their low cost,long life,and high energy density.In the lithium ion batter...1 Results Lithium ion batteries have been widely used in modern portable electronics,such as cellular phones and notebook computers,because of their low cost,long life,and high energy density.In the lithium ion batteries,the cathode provides lithium ion source and plays a critical role to determinate the performance of battery.Lithium transition metal oxides have been investigated as active cathode materials due to their high potential versus Li/Li+ and large proportion of the lithium ions can be insert...展开更多
In a unified regenerative fuel cell(URFC)or reversible fuel cell,the oxygen bifunctional catalyst must switch reversibly between the oxygen reduction reaction(ORR),fuel cell mode,and the oxygen evolution reaction(OER)...In a unified regenerative fuel cell(URFC)or reversible fuel cell,the oxygen bifunctional catalyst must switch reversibly between the oxygen reduction reaction(ORR),fuel cell mode,and the oxygen evolution reaction(OER),electrolyzer mode.However,it is often unclear what effect alternating between ORR and OER has on the electrochemical behavior and physiochemical properties of the catalyst.Herein,operando X-ray absorption spectroscopy(XAS)is utilized to monitor the continuous and dynamic evolution of the Co,Mn,and Fe oxidation states of perovskite catalysts Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF)and La_(0.4)Sr_(0.6)MnO_(3-δ)(LSM),while the potential is oscillated between reducing and oxidizing potentials with cyclic voltammetry.The results reveal the importance of investigating bifunctional catalysts by alternating between fuel cell and electrolyzer operation and highlight the limitations and challenges of bifunctional catalysts.It is shown that the requirements for ORR and OER performance are divergent and that the oxidative potentials of OER are detrimental to ORR activity.These findings are used to give guidelines for future bifunctional catalyst design.Additionally,it is demonstrated how sunlight can be used to reactivate the ORR activity of LSM after rigorous cycling.展开更多
Bi_(1-x)Eu_(x)Fe_(0.95)Co_(0.05)O_(3 )(x=0.05,0.10,0.15,and 0.20) nanoparticles were prepared through the sol-gel technique.Its structure,local electronic structure,magnetic and electric properties were systematically...Bi_(1-x)Eu_(x)Fe_(0.95)Co_(0.05)O_(3 )(x=0.05,0.10,0.15,and 0.20) nanoparticles were prepared through the sol-gel technique.Its structure,local electronic structure,magnetic and electric properties were systematically investigated.X-ray diffraction data show(104),(110) bimodal alignment and high angular migration,indicating that with the increase of Eu substitution at Bi site,the structure of BFO undergoes a continuous change in crystal structure.The hysteresis loop and the FC/ZFC curve show how magnetism varies with the size of the field and temperature.Finally,the causes of magnetic changes were analyzed by studying SXAS and hysteresis loops.展开更多
Bacterial leaf blight(BLB)is a devastating disease of rice with the potential to reduce yield by up to 70%.In this study,we investigated the genetic foundation of Xa21-mediated resistance to BLB infection in seven dif...Bacterial leaf blight(BLB)is a devastating disease of rice with the potential to reduce yield by up to 70%.In this study,we investigated the genetic foundation of Xa21-mediated resistance to BLB infection in seven different rice varieties from Myanmar.The varieties exhibited a variable phenotypic response at 14 d after infection(DAI)by Xoo strains K1 and K3a,among which,the variety Kayin Ma was classified as a moderately resistant(MR)variety,expressing Xa2,Xa4,xa5,xa13,and Xa21 genes.展开更多
Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug ...Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug design framework, Drug CAMD, that integrates a deep learning model with a mixed-integer nonlinear programming model is used for designing drug candidates. Within this framework, a virtual chemical library is specifically tailored to inhibit Factor Xa. To further filter and narrow down the lead compounds from the designed compounds, comprehensive approaches involving molecular docking,binding pose metadynamics(BPMD), binding free energy calculations, and enzyme activity inhibition analysis are utilized. To maximize efficiency in terms of time and resources, molecules for in vitro activity testing are initially selected from commercially available portions of customized virtual chemical libraries. In vitro studies assessing inhibitor activities have confirmed that the compound EN300-331859shows potential Factor Xa inhibition, with an IC_(50)value of 34.57 μmol·L^(-1). Through in silico molecular docking and BPMD, the most plausible binding pose for the EN300-331859-Factor Xa complex are identified. The estimated binding free energy values correlate well with the results obtained from biological assays. Consequently, EN300-331859 is identified as a novel and effective sub-micromolar inhibitor of Factor Xa.展开更多
文摘1 Results Lithium ion batteries have been widely used in modern portable electronics,such as cellular phones and notebook computers,because of their low cost,long life,and high energy density.In the lithium ion batteries,the cathode provides lithium ion source and plays a critical role to determinate the performance of battery.Lithium transition metal oxides have been investigated as active cathode materials due to their high potential versus Li/Li+ and large proportion of the lithium ions can be insert...
基金the Swiss National Science Foundation(project No.IZLJZ2_183670 and grant No.PR00P2_193111)the Paul Scherrer Institut for the funding for this work.Furthermorethe Independent Research Fund Denmark(Research Project 1,project“Rational Design of High-Entropy Oxides for Protonic Ceramic Fuel Cells,”grant No.1032-00269B)
文摘In a unified regenerative fuel cell(URFC)or reversible fuel cell,the oxygen bifunctional catalyst must switch reversibly between the oxygen reduction reaction(ORR),fuel cell mode,and the oxygen evolution reaction(OER),electrolyzer mode.However,it is often unclear what effect alternating between ORR and OER has on the electrochemical behavior and physiochemical properties of the catalyst.Herein,operando X-ray absorption spectroscopy(XAS)is utilized to monitor the continuous and dynamic evolution of the Co,Mn,and Fe oxidation states of perovskite catalysts Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF)and La_(0.4)Sr_(0.6)MnO_(3-δ)(LSM),while the potential is oscillated between reducing and oxidizing potentials with cyclic voltammetry.The results reveal the importance of investigating bifunctional catalysts by alternating between fuel cell and electrolyzer operation and highlight the limitations and challenges of bifunctional catalysts.It is shown that the requirements for ORR and OER performance are divergent and that the oxidative potentials of OER are detrimental to ORR activity.These findings are used to give guidelines for future bifunctional catalyst design.Additionally,it is demonstrated how sunlight can be used to reactivate the ORR activity of LSM after rigorous cycling.
基金Funded by the Research Project of Nanjing University of Posts and Telecommunications(Nos.NY217096 and NY213124)。
文摘Bi_(1-x)Eu_(x)Fe_(0.95)Co_(0.05)O_(3 )(x=0.05,0.10,0.15,and 0.20) nanoparticles were prepared through the sol-gel technique.Its structure,local electronic structure,magnetic and electric properties were systematically investigated.X-ray diffraction data show(104),(110) bimodal alignment and high angular migration,indicating that with the increase of Eu substitution at Bi site,the structure of BFO undergoes a continuous change in crystal structure.The hysteresis loop and the FC/ZFC curve show how magnetism varies with the size of the field and temperature.Finally,the causes of magnetic changes were analyzed by studying SXAS and hysteresis loops.
基金funded by the Basic Science Research Program of the Ministry of Education’s National Research Foundation of Korea (Grant No.RS-2023-00245922)。
文摘Bacterial leaf blight(BLB)is a devastating disease of rice with the potential to reduce yield by up to 70%.In this study,we investigated the genetic foundation of Xa21-mediated resistance to BLB infection in seven different rice varieties from Myanmar.The varieties exhibited a variable phenotypic response at 14 d after infection(DAI)by Xoo strains K1 and K3a,among which,the variety Kayin Ma was classified as a moderately resistant(MR)variety,expressing Xa2,Xa4,xa5,xa13,and Xa21 genes.
基金financial supports of the National Natural Science Foundation of China (22078041, 22278053,22208042)Dalian High-level Talents Innovation Support Program (2023RQ059)“the Fundamental Research Funds for the Central Universities (DUT20JC41, DUT22YG218)”。
文摘Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug design framework, Drug CAMD, that integrates a deep learning model with a mixed-integer nonlinear programming model is used for designing drug candidates. Within this framework, a virtual chemical library is specifically tailored to inhibit Factor Xa. To further filter and narrow down the lead compounds from the designed compounds, comprehensive approaches involving molecular docking,binding pose metadynamics(BPMD), binding free energy calculations, and enzyme activity inhibition analysis are utilized. To maximize efficiency in terms of time and resources, molecules for in vitro activity testing are initially selected from commercially available portions of customized virtual chemical libraries. In vitro studies assessing inhibitor activities have confirmed that the compound EN300-331859shows potential Factor Xa inhibition, with an IC_(50)value of 34.57 μmol·L^(-1). Through in silico molecular docking and BPMD, the most plausible binding pose for the EN300-331859-Factor Xa complex are identified. The estimated binding free energy values correlate well with the results obtained from biological assays. Consequently, EN300-331859 is identified as a novel and effective sub-micromolar inhibitor of Factor Xa.