期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China 被引量:1
1
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault Earthquake fault
下载PDF
Coseismic deformation and fault slip distribution of the 2023 M_(W)7.8 and M_(W)7.6 earthquakes in Türkiye 被引量:1
2
作者 Weikang Li Lijiang Zhao +4 位作者 Kai Tan Xiaofei Lu Caihong Zhang Chengtao Li Shuaishuai Han 《Earthquake Science》 2024年第3期263-276,共14页
On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 tha... On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk. 展开更多
关键词 2023 Türkiye earthquake GNSS observation coseismic deformation field slip distribution
下载PDF
Coseismic Coulomb stress changes induced by a 2020-2021 M_(W)>7.0 Alaska earthquake sequence in and around the Shumagin gap and its influence on the Alaska-Aleutian subduction interface
3
作者 Lei Yang Jianjun Wang Caijun Xu 《Geodesy and Geodynamics》 EI CSCD 2024年第1期1-12,共12页
Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6... Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench. 展开更多
关键词 The 2020-2021 Alaska earthquake SEQUENCE coseismic Coulomb stress change Mainshock-aftershock triggering The Alaska-Aleutian subduction interface The Shumagin gap
下载PDF
Preliminary report of coseismic surface rupture(part)of Türkiye's M_(W)7.8 earthquake by remote sensing interpretation
4
作者 Yali Guo Haofeng Li +3 位作者 Peng Liang Renwei Xiong Chaozhong Hu Yueren Xu 《Earthquake Research Advances》 CSCD 2024年第1期4-13,共10页
Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface r... Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories. 展开更多
关键词 2023 Türkiye M_(w)7.8 earthquake coseismic surface rupture East anatolian fault zone Eurasian seismic zone Remote sensing interpretation
下载PDF
Coseismic displacements and inospheric changes of the 2013 Ms7. 0 Lushan earthquake from GPS measurements
5
作者 Cai Hua Zhao Guoqiang 《Geodesy and Geodynamics》 2013年第3期30-34,共5页
By inverting GPS data recorded at stations of the Crustal Movement Observation Network of China (CMONOC) near the 2013 Lushan Ms7.0 earthquake, we found a horizontal displacement of 22 mm at a site about 32 kin SW o... By inverting GPS data recorded at stations of the Crustal Movement Observation Network of China (CMONOC) near the 2013 Lushan Ms7.0 earthquake, we found a horizontal displacement of 22 mm at a site about 32 kin SW of the epicenter and vertical displacements of as much as 12.4 mm at several sites. The vertical displacements were generally uplift on the west side of the nearby Longmenshan fault zone and subsidence on the east side. We also found coseismic ionospheric disturbances about 0.5 to 0.9 TECU in amplitude that lasted for about one hour. 展开更多
关键词 GPS Ms7.0 Lushan earthquake CMONOC coseismic displacement coseismic ionospheric disturbances
下载PDF
Numerical Simulation on Coseismic Effect of the November 14,2001 Great Kunlun Earthquake,Northern Tibet,China
6
作者 Wang Hui Zhang Guomin +3 位作者 Zhang Huai Shi Yaolin Liu Jie Shen Xuhui 《Earthquake Research in China》 2008年第2期195-205,共11页
The November 14,2001 M_S8.1 Kunlun Mountains earthquake in northern Tibet is the largest earthquake occurring on the Chinese mainland since 1950.We apply a three-dimensional(3-D)finite element numerical procedure to m... The November 14,2001 M_S8.1 Kunlun Mountains earthquake in northern Tibet is the largest earthquake occurring on the Chinese mainland since 1950.We apply a three-dimensional(3-D)finite element numerical procedure to model the coseismic displacement and stress fields of the earthquake based on field investigations.We then further investigate the stress interaction between the M_S8.1 earthquake and the intensive aftershocks.Our primary calculation shows that the coseismic displacement field is centralized around the east Kunlun fault zone.And the attenuation of coseismic displacements on the south side of Kunlun fault zone is larger than that on the north side.The calculated coseismic stress field also indicates that the calculated maximal shear stress field is centralized around the east Kunlun fault zone;the directions of the coseismic major principal stress are opposite to that of the background crustal stress field of the Qinghai-Xizang(Tibet)Plateau.It indicates that the earthquake relaxes the crustal stress state in the Qinghai-Xizang(Tibet)Plateau.Finally,we study the stress interaction between M_S8.1 earthquake and its intensive aftershocks.The calculated Coulomb stress changes of the M_S8.1 great earthquake are in favor of triggering 4 aftershocks. 展开更多
关键词 The Ms8.1 Kunlun Mountains earthquake coseismic displacement coseismic stress Numerical simulation
下载PDF
Parameters of Coseismic Reverse- and Oblique-Slip Surface Ruptures of the 2008 Wenchuan Earthquake,Eastern Tibetan Plateau 被引量:30
7
作者 XU Xiwei YU Guihua +4 位作者 CHEN Guihua RAN Yongkang LI Chenxia CHEN Yuegau CHANG Chungpai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期673-684,共12页
On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan platea... On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported. 展开更多
关键词 surface rupture zone coseismic offset Wenchuan earthquake LONGMENSHAN
下载PDF
Preliminary analysis on characteristics of coseismic deformation associated with MS=8.1 western Kunlunshan Pass earthquake in 2001 被引量:11
8
作者 SHAN Xin-jian(单新建) +3 位作者 LIU Jia-hang(柳稼航) MA Chao(马超) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第5期526-533,共8页
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism... Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of MS=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. 展开更多
关键词 INSAR M_S=8.1 western Kunlunshan Pass earthquake coseismic deformation
下载PDF
Active source monitoring at the Wenchuan fault zone:coseismic velocity change associated with aftershock event and its implication 被引量:6
9
作者 Wei Yang Hongkui Ge +3 位作者 Baoshan Wang Jiupeng Hu Songyong Yuan Sen Qiao 《Earthquake Science》 2014年第6期599-606,共8页
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem... With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling. 展开更多
关键词 Wenchuan fault zone coseismic velocity change Accurately Controlled Routinely Operated Seismic Source (ACROSS) Active monitoring Forward modeling
下载PDF
Interpreting the Coseismic Uplift and Subsidence of the Longmen Shan Foreland Basin System during the Wenchuan Earthquake by a Elastic Flexural Model 被引量:4
10
作者 YAN Zhaokun LI Yong +4 位作者 SHAO Chongjian ZHOU Rongjun YAN Liang ZHAO Guohua YAN Binglei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期555-566,共12页
The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using se... The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using several methods, such as GPS, SAR and levelling. Using an elastic flexural model, we aim to interpret the coseismic surface uplift and subsidence, and constrain the effective lithospheric elastic thickness(Te) of the Sichuan Basin. Using different effective elastic thickness values for the Sichuan Basin, a series of subsidence curves were computed by the elastic flexure model equation for a broken elastic plate. The curves, produced by models using an effective elastic thickness of 30–40 km, provided the best fit to the general pattern of observed coseismic subsidence of the Sichuan Basin. However, the calculated subsidence(-40–70 cm) at the front of the LMS is evidently lower than the observed values(-100 cm), suggesting that the effective elastic thickness therein should be lower. These results indicate that the lithospheric strength may decrease westward from the Sichuan Basin to the LMS. 展开更多
关键词 flexural model Longmen Shan Wenchuan Earthquake coseismic uplift and subsidence foreland basin system
下载PDF
Coseismic and postseismic slip ruptures for 2015Mw 6.4 Pishan earthquake constrained by static GPS solutions 被引量:5
11
作者 Ping He Qi Wang +2 位作者 Kaihua Ding Jie Li Rong Zou 《Geodesy and Geodynamics》 2016年第5期323-328,共6页
On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites... On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively,and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed. 展开更多
关键词 Pishan earthquake Global Positioning System (GPS) coseismic deformation Postseismic deformation Model inversion
下载PDF
Detection of a half-microgal coseismic gravity change after the Ms7. 0 Lushan earthquake 被引量:7
12
作者 Wei Jin Zhao Bin +3 位作者 Tan Hongbo Yu Dan Shen Chongyang Li Hui 《Geodesy and Geodynamics》 2013年第3期7-11,共5页
Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, ... Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations. 展开更多
关键词 GS15 gravimeter coseismic gravity change the Ms7. 0 Lushan earthquake
下载PDF
Regularized inversion for coseismic slip distribution with active constraint balancing 被引量:2
13
作者 TONG Xiao-zhong XIE Wei GAO Da-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2961-2968,共8页
Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. I... Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and solutions may be extremely oscillatory due to measurement errors without any constraints on the coseismic slip distribution. In order to obtain stable solution for coseismic slip inversion, regularization method with smoothness-constrained was imposed. Trade-off parameter in regularized inversion, which balances the minimization of the data misfit and model roughness, should be a critical procedure to achieve both resolution and stability. Then, the active constraint balancing approach is adopted, in which the trade-off parameter is regarded as a spatial variable at each model parameter and automatically determined via the model resolution matrix and the spread function. Numerical experiments for a synthetical model indicate that regularized inversion using active constraint balancing approach can provides stable inversion results and have low sensitivity to the knowledge of the exact character of the Gaussian noise. Regularized inversion combined with active constraint balancing approach is conducted on the 2005 Nias earthquake. The released moment based on the estimated coseismic slip distribution is 9.91×1021 N·m, which is equivalent to a moment magnitude of 8.6 and almost identical to the value determined by USGS. The inversion results for synthetic coseismic uniform-slip model and the 2005 earthquake show that smoothness-constrained regularized inversion method combined with active constraint balancing approach is effective, and can be reasonable to reconstruct coseismic slip distribution on fault. 展开更多
关键词 coseismic SLIP INVERSION trade-off parameter ACTIVE CONSTRAINT balancing model resolution matrix spread function
下载PDF
Treatment of discontinuities inside Earth models:Effects on computed coseismic deformations 被引量:4
14
作者 Jie Dong Gabriele Cambiotti +2 位作者 HanJiang Wen Roberto Sabadini WenKe Sun 《Earth and Planetary Physics》 CSCD 2021年第1期90-104,共15页
In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous... In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous),we find that the difference in Love numbers of strike-slip and horizontal tensile sources are bigger than dip-slip and vertical tensile sources.Taken collectively,discontinuities have major effects on Green’s functions of four independent sources.For the near-field coseismic deformations of the 2013 Okhotsk earthquake(Mw 8.3),the overall differences between theoretical calculations in vertical displacement,geoid,and gravity changes caused by discontinuities are 10.52 percent,9.07 percent and 6.19 percent,with RMS errors of 0.624 mm,0.029 mm,and 0.063μGal,respectively.The difference in far-field displacements is small,compared with GPS data,and we can neglect this effect.For the shallow earthquake,2011 Tohoku-Oki earthquake(Mw 9.0),the differences in near-field displacements are 0.030 m(N-S),0.093 m(E-W),and 0.025 m(up-down)in our study area with the ARIA slip model,which gives results closer to GPS data than those from the USGS model.The difference in vertical displacements and gravity changes on the Earth’s surface caused by discontinuities are larger than 10 percent.The difference in the theoretical gravity changes at spatially fixed points truncated to degrees 60,as required by GRACE data,is 0.0016μGal and the discrepancy is 11 percent,with the theoretical spatial gravity changes from 1066B closer to observations than from 1066A.The results show that an Earth model with discontinuities in the medium has a large effect on the calculated coseismic deformations. 展开更多
关键词 DISCONTINUITIES Earth model coseismic deformations GPS GRACE
下载PDF
Simulation of coseismic effects of the Ms7. 0 Lushan earthquake 被引量:3
15
作者 Tan Hongbo Shen Chongyang +3 位作者 Wei Jin Zhao Bin Wang Jian Xuan Songbai 《Geodesy and Geodynamics》 2013年第3期12-18,共7页
Using plane dislocation theory and the seismic-wave inversion results from the Institute of Geophysics, China Earthquake Administration and the Institute of Geodesy and Geophysics, Chinese Academy of Sciences models, ... Using plane dislocation theory and the seismic-wave inversion results from the Institute of Geophysics, China Earthquake Administration and the Institute of Geodesy and Geophysics, Chinese Academy of Sciences models, the surface coseismic deformation and gravity changes caused by the 2013 Ms7.0 Lushan earthquake are simulated. The simulations of coseismic gravity change and deformation indicate that the dislocation has dip-slip characteristics. The results also show that the coseismic deformation exhibits a symmetrical, positive-and-negative distribution, with the deformation usually being less than 10 mm in the far- field but up to 140 mm in the near-field. The gravity changes are concentrated on the fault-projection area, which is greatly affected by the vertical surface deformation. The gravity change and vertical deformation in the far field are usually less than and 5 mm, respectively, but reach and 330 mm, respectively, in the near field. The simulated results agree well with the measured resuhs, which suggests a theoretical basis for the observed change in gravity before and after this earthquake. 展开更多
关键词 Lushan earthquake dislocation theory coseismic effects SIMULATION
下载PDF
Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal(Gorkha)earthquake observed by superconducting gravimeters in Chinese mainland 被引量:5
16
作者 LeLin Xing ZiWei Liu +3 位作者 JianGang Jia ShuQing Wu ZhengSong Chen XiaoWei Niu 《Earth and Planetary Physics》 CSCD 2021年第2期141-148,共8页
Using data from five SGs at four stations in Chinese mainland,obvious permanent gravity changes caused by the 2015 MW7.8 Nepal(Gorkha)earthquake were detected.We analyzed the gravity effects from ground vertical defor... Using data from five SGs at four stations in Chinese mainland,obvious permanent gravity changes caused by the 2015 MW7.8 Nepal(Gorkha)earthquake were detected.We analyzed the gravity effects from ground vertical deformation(VD)using co-site continuous GPS(cGPS)data collocated at the Lijiang and the Wuhan station,and hydrological effects using GLDAS models and groundwater level records.After removing these effects,SG observations before and after the earthquake revealed obvious permanent gravity changes:−3.0μGal,7.3μGal and 8.0μGal at Lhasa,Lijiang and Wuhan station,respectively.We found that the gravity changes cannot be explained by the results of dislocation theory. 展开更多
关键词 the 2015 Nepal earthquake superconducting gravimeter coseismic gravity change
下载PDF
The Surface Rupture Zone and Coseismic Deformation Produced by the Yutian Ms7.3 Earthquake of 21 March 2008,Xinjiang 被引量:2
17
作者 SHAN Xinjian QU Chunyan +5 位作者 WANG Chisheng ZHANG Guifang ZHANG Guohong SONG Xiaogang GUO Liming LIU Yunhua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期256-265,共10页
On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on ana... On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south. 展开更多
关键词 Yuntian Earthquake high resolution image D-INSAR surface rupture zone coseismic deformation field
下载PDF
Three-dimensional numerical simulation on the coseismic deformation of the 2008 M_S8.0 Wenchuan earthquake in China 被引量:2
18
作者 Feng Li Jinshui Huang 《Earthquake Science》 CSCD 2010年第2期191-200,共10页
Based on the finite element numerical algorithm, the coseismic displacements of the Wenchuan Ms8.0 earthquake are calculated with the rupture slip vectors derived by Ji and Hayes as well as Nishimura and Yaji. Except ... Based on the finite element numerical algorithm, the coseismic displacements of the Wenchuan Ms8.0 earthquake are calculated with the rupture slip vectors derived by Ji and Hayes as well as Nishimura and Yaji. Except in a narrow strip around the rupture zone, the coseismic displacements are consistent with those from GPS observation and InSAR interpretation. Numerical results show that rupture slip vectors and elastic properties have profound influences on the surface coseismic deformation, Results from models with different elastic parameters indicate that: (1) in homogeneous elastic medium, the surface displacements are weakly dependent on Poisson's ratio and independent of the elastic modulus; (2) in horizontally homogeneous medium with a weak zone at its middle, the thickness of the weak zone plays a significant role on calculating the surface displacements; (3) in horizontally and vertically heterogeneous medium, the surface displacements depend on both Poisson's ratio and elastic modulus. Calculations of eoseismic deformation should take account of the spatial variation of the elastic properties. The misfit of the numerical results with that from the GPS observations in the narrow strip around the rupture zone suggests that a much more complicated rupture model of the Wenchuan earthquake needs to be established in future study. 展开更多
关键词 coseismic deformation Wenchuan earthquake finite element method elastic modulus
下载PDF
GIS-based Evaluation on the Fault Motion-Induced Coseismic Landslides 被引量:2
19
作者 Ming-Wey HUANG Chien-Yuan CHEN +3 位作者 Tzu-Hsiu WU Chi-Ling CHANG Sheu-Yien LIU Ching-Yun KAO 《Journal of Mountain Science》 SCIE CSCD 2012年第5期601-612,共12页
Earthquake-induced potential landslides are commonly estimated using landslide susceptibility maps. Nevertheless, the fault location is not identified and the ground motion caused by it is unavailable in the map. Thus... Earthquake-induced potential landslides are commonly estimated using landslide susceptibility maps. Nevertheless, the fault location is not identified and the ground motion caused by it is unavailable in the map. Thus, potential coseismic landslides for a specific fault motion-induced earthquake could not be predicted using the map. It is meaningful to incorporate the fault location and ground motion characteristics into the landslide predication model. A new method for a specific fault motion-induced coseismic landslide prediction model using GIS (Geographic Information System) is proposed herein. Location of mountain ridges, slope gradients over 45~, PVGA (Peak Vertical Ground Accelerations) exceeded o.15 g, and PHGA (Peak Horizontal Ground Accelerations) exceeded o.25 g of slope units were representing locations that initiated landslides during the 1999 Chi-Chi earthquake in Taiwan. These coseismic landslide characteristics were used to identify areas where landslides occurred during Meishan fault motion-induced strong ground motions in Chiayi County in Taiwan. The strong ground motion (over 8 Gal in the database, 1 Gal = 0.0l m/s2, and 1 g = 981 GaD characteristics were evaluated by the fault length, site distance to the fault, and topography, and their attenuation relations are presented in GIS. The results of the analysis show that coseismic landslide areas could be identified promptly using GIS. The earthquake intensity and focus depthhave visible effects on ground motion. The shallower the focus depth, the larger the magnitude increase of the landslides. The GIS-based landslide predication method is valuable combining the geomorphic characteristics and ground motion attenuation relationships for a potential region landslide hazard assessment and in disaster mitigation planning. 展开更多
关键词 coseismic landslide GIS Chi-Chiearthquake
下载PDF
Coseismic deformation of the 2021 M_(W)7.4 Maduo earthquake from joint inversion of InSAR, GPS, and teleseismic data 被引量:2
20
作者 Chaoya Liu Ling Bai +5 位作者 Shunying Hong Yanfang Dong Yong Jiang Hongru Li Huili Zhan Zhiwen Chen 《Earthquake Science》 2021年第5期436-446,共11页
The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_... The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block. 展开更多
关键词 Maduo earthquake joint inversion coseismic de-formation fault geometry rupture process.
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部