Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminan...Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminants.Although piezoelectric materials offer a wide range of options,most related studies thus far have focused on inorganic materials and have paid little attention to organic materi-als.Organic materials have advantages,such as being lightweight,inexpensive,and easy to process,over inorganic materials.Therefore,this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials,high-lighting their catalytic efficiency in addressing various pollutants.In addition,the applications of organic materials in piezoelectric cata-lysis for water decomposition to produce hydrogen,disinfect bacteria,treat tumors,and reduce carbon dioxide are presented.Finally,fu-ture developmental trends regarding the piezoelectric catalytic potential of organic materials are explored.展开更多
Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem...Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.展开更多
Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate o...Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.展开更多
This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueo...This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.展开更多
Objective:To determine the effects of textile dyeing industrial wastewater on the hematological parameters and reproductive health including histoarchitecture of male gonad(testes)of mice.Methods:Twenty-four Swiss alb...Objective:To determine the effects of textile dyeing industrial wastewater on the hematological parameters and reproductive health including histoarchitecture of male gonad(testes)of mice.Methods:Twenty-four Swiss albino mice at 4-weeks old were divided into four groups(n=6 per group).Mice of group 1 supplied with normal drinking water were served as the control group.Mice of group 2,3 and 4 were supplied normal drinking water mixed with textile dyeing wastewater at 5%,10% and 20% concentration,respectively.After completing 24 weeks of treatment,different hematological profile,weight of testes,gonadosomatic index(GSI),sperm concentration and morphology were measured.Moreover,histopathological changes in testes were examined.Results:Hematocrit value and hemoglobin concentrations were decreased in all groups of wastewater-treated mice compared to the control group.Likewise,weight of testes,GSI and sperm concentration were decreased significantly in wastewater-treated mice in comparison to the control group.The percentage of morphologically healthy epididymal sperm was significantly reduced in wastewater-treated mice.Histopathological examination revealed degenerative changes in seminiferous tubules,a smaller number of spermatogenic cells,elongation of seminiferous tubules and degenerative changes of seminiferous tubules in wastewater-treated mice.Conclusions:Textile dyeing wastewater has harmful effects on hematological profile and reproductive health of male mice.展开更多
The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-...The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-excited cyanine dyes is not satisfactory.These cyanine dyes can be attacked by self-generated reactive oxygen species(ROS)during PDT processes,resulting in structural damage and rapid degradation,which is fatal for phototherapy.To address this issue,a novel non-cyanine dye(IR890)was elaborately designed and synthesized by our team.The maximum absorption wavelength of IR890 was located in the deep NIR region(ca.890 nm),which was beneficial for further improving tissue penetration depth.Importantly,IR890 exhibited good stability when continuously illuminated by deep NIR light.To improve the hydrophilicity and biocompatibility,the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer(POEGMA-b-PGMA-g-C≡CH)via click chemistry.Then,the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymerwas utilized to prepare P-IR890 nano-photosensitizer via self-assembly method.Under irradiation with deep NIR light(850 nm,0.5 W/cm^(2),10 min),the dye degradation rate of P-IR890 was less than 5%.However,IR780 was almost completely degraded with the same light output power density and irradiation duration.In addition,P-IR890 could stably generate a large number of ROS and heat at the same time.It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light.P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway.Therefore,the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.展开更多
The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport...The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport of xylem.In this study,the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section.Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated.Then,the transport rule of 5(6)-Carboxyfluorescein diacetate(CFDA)in the xylem of the stem of L.lancifolium was studied by fluorescence dye in live cells tracer technology.The results showed that the vascular bundles of L.lancifolium were scattered in the basic tissue,the peripheral vascular bundles were smaller and densely distributed,and the closer to the center,the larger the volume of vascular bundles and the more sparsely distributed.The vascular bundles of L.lancifolium are limited external tenacity vascular bundles,which are composed of phloem and xylem.The most suitable method for CFDA labeling the xylem of isolated stem segments of L.lancifolium was solution soaking for 24 h.The running speed of CF in the isolated stem was 0.3 cm/h,which was consistent with the running speed of the material in the field.CF could be transported between the xylem and parenchyma cells,indicating that the material transport in the xylem could be through the symplastic pathway.The above results laid a foundation for the study of the xylem transport mechanism and the xylem pathogen disease of lily.展开更多
Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research...Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research aims to utilize waste tannins as natural dyes as an alternative to synthetic dyes.This study examined the effect of the extraction method on tannin properties such as phenolic content,antioxidants,and antibacterial activity.In addition,Pyrolysis Gas Chromatography‒Mass Spectrometry(Py-GCMS)analysis was used to identify the effect of extraction temperature on the chemical elucidation of tannin.The effect of tannin concentration was evaluated against four bacteria that are usually found on human skin:Staphylococcus epidermidis,Bacillus subtilis,Propionibacterium acnes,and Staphylococcus aureus.Extraction temperature significantly influences the chemical composition of tannin,which leads to different antioxidant properties.The maximum antibacterial properties of tannin were obtained at 90℃with the inhibition zone in the range of 0.9–1.0 mm against four bacteria,tannin yield of 26.59%,Gallic Acid Equivalents or total phenolic content(GAE)of 40.30 mg/g,and Radical Scavenging Activity or antioxidant activity(RSA)of 89.88%.Moreover,the concentration of tannin was significantly linear with its antibacterial properties.Tannin was successfully applied to the textile by using alum as a mordanting agent to create an antibacterial textile.The textile’s bacterial structure damage was analyzed under Field Emission Scanning Electron Microscopy(FESEM).After 50 washings,tannin-textiles with alum-modified properties remained stable compared to those without alum,with S.aureus and S.epidermidis being the most vulnerable bacteria,as confirmed by FESEM images.Hence,tannin is a feasible alternative to harmful and nondegradable synthetic dyes and antibacterial agents.展开更多
Ce-TiO_(2)-RGO composite photocatalyst was prepared by sol-gel method and ultrasonic treatment.The effect of Ce doping mass fraction on the degradation of textile printing and dyeing wastewater was studied.The catalys...Ce-TiO_(2)-RGO composite photocatalyst was prepared by sol-gel method and ultrasonic treatment.The effect of Ce doping mass fraction on the degradation of textile printing and dyeing wastewater was studied.The catalysts were characterized by XRD,SEM,TEM,UV-vis and PL.The results showed that,Ce-TiO_(2)particles uniformly adsorbed on the GO surface,and the particle diameter of Ce-TiO_(2)was approximately 25-110 nm.After Ce doping,the absorption band edge of TiO_(2)-RGO composite photocatalyst was redshifted and the band gap was reduced.With the increase of Ce doping mass fraction,the PL intensity of Ce-TiO_(2)-RGO composite photocatalyst first decreased and then slightly increased,and the emission peak intensity of 6%Ce-TiO_(2)-RGO composite photocatalyst was the lowest at 410 nm and 470 nm.Taking textile printing and dyeing wastewater as the research object of degradation,the COD removal rate of 6%Ce-TiO_(2)-RGO reached the maximum of 82.21%at 180 min,and the COD value after degradation was 88.95 mg/L which was in line with the wastewater discharge standard.On the other hand,at 180 min,the degradation rate for textile printing and dyeing wastewater by 6%Ce-TiO_(2)-RGO also reached the maximum(99.21%).Therefore,the Ce-TiO_(2)-RGO composite photocatalyst showed great application potential in the treatment of textile dyeing wastewater.展开更多
Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on ...Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on amino-functionalized ZnFe_(2)O_(4) nanoparticles(ZnFe_(2)O_(4)-laccase)and its application for the degradation of textile dyes.Due to the existence of a large number of oxygen vacancies on the surface of the ZnFe_(2)O_(4) nanoparticles,negative ions accumulated on the magnetic carriers,which resulted in a harsh optimal pH value of the ZnFe_(2)O_(4)-laccase.Laccase activity assays revealed that the ZnFe_(2)O_(4)-laccase possessed superior pH and thermal stabilities,excellent reusability,and noticeable organic solvent tolerance.Meanwhile,the ZnFe_(2)O_(4) laccase presented efficient and sustainable degradation of high concentrations of textile dyes.The initial decoloration efficiencies of malachite green(MG),brilliant green(BG),azophloxine,crystal violet(CV),reactive blue 19(RB19),and procion red MX-5B were approximately 99.1%,95.0%,93.3%,87.4%,86.1%,and 85.3%,respectively.After 10 consecutive reuses,the degradation rates of the textile dyes still maintained about 98.2%,92.5%,83.2%,81.5%,79.8%and 65.9%,respectively.The excellent dye degradation properties indicate that the ZnFe_(2)O_(4)-laccase has a technical application in high concentrations of dyestuff treatment.展开更多
Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source ...Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source materials.The chemical composition and structure of the catalysts was characterized by FT-IR,XRD,SEM,TEM,and XPS.The XPS characterization indicated that Ti_(3)C_(2)was partially oxidized to TiO_(2)during the composite process.As a result,an efficient direct-Z-scheme heterojunction structure consisting of the g-C_(3)N_(4)and TiO_(2)with Ti_(3)C_(2)as an electron bridge was constructed.The photocatalytic performance of the prepared catalysts was evaluated by degrading the Rhodamine B(RhB)wastewater.Compared with the single g-C_(3)N_(4),the g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)composite photocatalyst exhibited efficient and stable photocatalytic degradation ability,with a degradation efficiency as high as 99.2%for RhB under optimal conditions(2%Ti_(3)C_(2),pH=3).The high degradation performance of g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)for RhB was attributed to the combination of Ti_(3)C_(2),TiO_(2),and g-C_(3)N_(4)components,forming a direct-Z-scheme heterojunction with a high-speed electron transport channel structure.The role of Z-scheme heterojunctions in electron transport is verified by photoelectrochemical characterization,along with photoluminescence(PL).Our research provides a simple method to design photocatalysts by constructing direct-Z-scheme electron transport channels for highly efficient treatment of dye wastewater.展开更多
Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences.The current study aims to utilize pineapple biowaste extract in producing bacterial cellu...Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences.The current study aims to utilize pineapple biowaste extract in producing bacterial cellulose acetate-based membranes with magnetic nanoparticles(Fe_(3)O_(4)nanoparticles)through the fermentation and esterification process and explore its characteristics.The bacterial cellulose fibrillation used a high-pressure homogenization procedure,and membranes were developed incorporating 0.25,0.50,0.75,and 1.0 wt.%of Fe3O4 nanoparticles as magnetic nanoparticle for functionalization.The membrane characteristics were measured in terms of Scanning Electron Microscope,X-ray diffraction,Fourier Transform Infrared,Vibrating Sample Magnetometer,antibacterial activity,bacterial adhesion and dye adsorption studies.The results indicated that the surface morphology of membrane changes where the bacterial cellulose acetate surface looks rougher.The crystallinity index of membrane increased from 54.34%to 68.33%,and the functional groups analysis revealed that multiple peak shifts indicated alterations in membrane functional groups.Moreover,adding Fe_(3)O_(4)-NPs into membrane exhibits paramagnetic behavior,increases tensile strength to 73%,enhances activity against E.coli and S.aureus,and is successful in removing bacteria from wastewater of the river to 67.4%and increases adsorption for anionic dyes like Congo Red and Acid Orange.展开更多
The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that thei...The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.展开更多
The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% d...Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% decolorization of Reactive blue 160 (RB160), Reactive black 5 (RB5) and Amido black 10B (AB10B) respectively. Further analysis using UV-vis, HPLC, and FTIR, <sup>1</sup>H NMR had shown the degradation of the dyes. Toxicity analysis of the metabolites was performed using seed germination and plant growth on two agriculturally important plants Guar (Cyamopsis tetragonoloba) and wheat (Triticum aestivum) as well as cytotoxicity analysis using the human keratinocyte cell line (HaCaT). The dye mix appeared inhibitory for seed germination (20% - 40%), whereas metabolites were non-inhibitory for germination. Treatment of HaCaT cells with of dye mix and metabolites led into 45% and ~100% of cell viability of HaCaT cells respectively. Therefore, metabolites following degradation of the dye mix were observed to be non-toxic.展开更多
BLUE calico is a traditional Chinese handmade printed fabric.Dyed in indigo,it has a blue base with white patterns.Tongxiang,a city in east China’s Zhejiang Province,is well-known for printing and dyeing blue calico....BLUE calico is a traditional Chinese handmade printed fabric.Dyed in indigo,it has a blue base with white patterns.Tongxiang,a city in east China’s Zhejiang Province,is well-known for printing and dyeing blue calico.The craft boasts a history of a millennium in the town with its heyday in the Tang(618-907)and Song(960-1279)dynasties.The technique was widely applied by the general public during the Ming and Qing dynasties(1368-1911).展开更多
Textiles are one of the oldest industries in the world which has been manufacturing fabrics and materials needed for various purposes.However,the industry has been confronted with some problems regarding its pollution...Textiles are one of the oldest industries in the world which has been manufacturing fabrics and materials needed for various purposes.However,the industry has been confronted with some problems regarding its pollution;specifically the dyeing and finishing processes.As for the given issues,there has been a trend in recent years to come up with more environmentally friendly solutions.展开更多
4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a...4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a crucial derivative of BODIPY scaffold that has the favorable optical properties and a significant spectral redshift. The photophysical properties can be tuned by molecular design, and the attenuation path of the excited state energy release of absorbed light energy can be well controlled via structural modifications, enabling tailored application. It has been extensively employed in life medicine fields including fluorescence imaging diagnosis, photodynamic therapy photosensitizer and photothermal therapy reagent and so forth. Extensive research and review have been performed in these areas. However, BODIPYs/aza-BODIPYs have a significant role in energy, catalysis, optoelectronics, photo-responsive materials and other fields. Nevertheless, there are relatively few studies and reviews in these fields on the modification and application based on BODIPY/aza-BODIPY scaffold. Herein, in this review we summarized the application of BODIPY/aza-BODIPY in the aforementioned fields, with the molecular regulation of dye as the foundation and the utilization in the above fields as the objective, in the intention of providing inspiration for the exploration of innovative BODIPY/aza-BODIPY research in the field of light resource conversion and functional materials.展开更多
Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrod...Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.展开更多
基金the National Natural Science Foundation of China(No.22179108)the Key Research and Development Projects of Shaanxi Province,China(No.2020GXLH-Z-032)+2 种基金the Doctoral Re-search Start-up Fund project of Xi’an Polytechnic University(No.107020589)the Shaanxi Provincial High-Level Talents Introduction Project(Youth Talent Fund)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,China(No.22567627H).
文摘Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminants.Although piezoelectric materials offer a wide range of options,most related studies thus far have focused on inorganic materials and have paid little attention to organic materi-als.Organic materials have advantages,such as being lightweight,inexpensive,and easy to process,over inorganic materials.Therefore,this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials,high-lighting their catalytic efficiency in addressing various pollutants.In addition,the applications of organic materials in piezoelectric cata-lysis for water decomposition to produce hydrogen,disinfect bacteria,treat tumors,and reduce carbon dioxide are presented.Finally,fu-ture developmental trends regarding the piezoelectric catalytic potential of organic materials are explored.
基金supported by the National Natural Science Foundation of China(Grant No.52071276)the Natural Science Foundation of Chongqing,China(Grant No.CSTB2022NSCQ-MSX0440)the Fundamental Research Funds for the Central Universities(Grant No.SWUXDJH202313,SWU-KQ22083).
文摘Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.
文摘Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.
基金funded by the Minister of Education,Culture,Research,and Technology of Indonesia through a research scheme of“Penelitian Fundamental–Reguler(PFR)2023”under a contract number of 1115c/IT9.2.1/PT.01.03/2023.
文摘This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.
基金funded by the Ministry of Science and Technology of the Government of People’s Republic of Bangladesh(163-BS/2020-2021).
文摘Objective:To determine the effects of textile dyeing industrial wastewater on the hematological parameters and reproductive health including histoarchitecture of male gonad(testes)of mice.Methods:Twenty-four Swiss albino mice at 4-weeks old were divided into four groups(n=6 per group).Mice of group 1 supplied with normal drinking water were served as the control group.Mice of group 2,3 and 4 were supplied normal drinking water mixed with textile dyeing wastewater at 5%,10% and 20% concentration,respectively.After completing 24 weeks of treatment,different hematological profile,weight of testes,gonadosomatic index(GSI),sperm concentration and morphology were measured.Moreover,histopathological changes in testes were examined.Results:Hematocrit value and hemoglobin concentrations were decreased in all groups of wastewater-treated mice compared to the control group.Likewise,weight of testes,GSI and sperm concentration were decreased significantly in wastewater-treated mice in comparison to the control group.The percentage of morphologically healthy epididymal sperm was significantly reduced in wastewater-treated mice.Histopathological examination revealed degenerative changes in seminiferous tubules,a smaller number of spermatogenic cells,elongation of seminiferous tubules and degenerative changes of seminiferous tubules in wastewater-treated mice.Conclusions:Textile dyeing wastewater has harmful effects on hematological profile and reproductive health of male mice.
基金This project was supported by National Natural Science Foundation of China(Grant No.82271629 and 82301790)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2023R01002)Ningbo Natural Science Foundation(Grant No.2023J054).
文摘The cyanine dyes represented by IR780 can achieve synergistic photodynamic therapy(PDT)and photothermal therapy(PTT)under the stimulation of near-infrared(NIR)light(commonly 808 nm).Unfortunately,the stability of NIR-excited cyanine dyes is not satisfactory.These cyanine dyes can be attacked by self-generated reactive oxygen species(ROS)during PDT processes,resulting in structural damage and rapid degradation,which is fatal for phototherapy.To address this issue,a novel non-cyanine dye(IR890)was elaborately designed and synthesized by our team.The maximum absorption wavelength of IR890 was located in the deep NIR region(ca.890 nm),which was beneficial for further improving tissue penetration depth.Importantly,IR890 exhibited good stability when continuously illuminated by deep NIR light.To improve the hydrophilicity and biocompatibility,the hydrophobic IR890 dye was grafted onto the side chain of hydrophilic polymer(POEGMA-b-PGMA-g-C≡CH)via click chemistry.Then,the synthesized POEGMA-b-PGMA-g-IR890 amphiphilic polymerwas utilized to prepare P-IR890 nano-photosensitizer via self-assembly method.Under irradiation with deep NIR light(850 nm,0.5 W/cm^(2),10 min),the dye degradation rate of P-IR890 was less than 5%.However,IR780 was almost completely degraded with the same light output power density and irradiation duration.In addition,P-IR890 could stably generate a large number of ROS and heat at the same time.It was rarely reported that the stable synergistic combination therapy of PDT and PTT could be efficiently performed by a single photosensitizer via irradiation with deep NIR light.P-IR890 exhibited favorable anti-tumor outcomes through apoptosis pathway.Therefore,the P-IR890 could provide a new insight into the design of photosensitizers and new opportunities for synergistic combination therapy of PDT and PTT.
基金the National Natural Science Foundation of China(31902043,32172612).
文摘The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport of xylem.In this study,the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section.Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated.Then,the transport rule of 5(6)-Carboxyfluorescein diacetate(CFDA)in the xylem of the stem of L.lancifolium was studied by fluorescence dye in live cells tracer technology.The results showed that the vascular bundles of L.lancifolium were scattered in the basic tissue,the peripheral vascular bundles were smaller and densely distributed,and the closer to the center,the larger the volume of vascular bundles and the more sparsely distributed.The vascular bundles of L.lancifolium are limited external tenacity vascular bundles,which are composed of phloem and xylem.The most suitable method for CFDA labeling the xylem of isolated stem segments of L.lancifolium was solution soaking for 24 h.The running speed of CF in the isolated stem was 0.3 cm/h,which was consistent with the running speed of the material in the field.CF could be transported between the xylem and parenchyma cells,indicating that the material transport in the xylem could be through the symplastic pathway.The above results laid a foundation for the study of the xylem transport mechanism and the xylem pathogen disease of lily.
基金funded by the JASTIP-RISH 2022(S-08)RIIM 2023 Batch 4,National Research and Innovation Agency(BRIN)Indonesia.
文摘Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research aims to utilize waste tannins as natural dyes as an alternative to synthetic dyes.This study examined the effect of the extraction method on tannin properties such as phenolic content,antioxidants,and antibacterial activity.In addition,Pyrolysis Gas Chromatography‒Mass Spectrometry(Py-GCMS)analysis was used to identify the effect of extraction temperature on the chemical elucidation of tannin.The effect of tannin concentration was evaluated against four bacteria that are usually found on human skin:Staphylococcus epidermidis,Bacillus subtilis,Propionibacterium acnes,and Staphylococcus aureus.Extraction temperature significantly influences the chemical composition of tannin,which leads to different antioxidant properties.The maximum antibacterial properties of tannin were obtained at 90℃with the inhibition zone in the range of 0.9–1.0 mm against four bacteria,tannin yield of 26.59%,Gallic Acid Equivalents or total phenolic content(GAE)of 40.30 mg/g,and Radical Scavenging Activity or antioxidant activity(RSA)of 89.88%.Moreover,the concentration of tannin was significantly linear with its antibacterial properties.Tannin was successfully applied to the textile by using alum as a mordanting agent to create an antibacterial textile.The textile’s bacterial structure damage was analyzed under Field Emission Scanning Electron Microscopy(FESEM).After 50 washings,tannin-textiles with alum-modified properties remained stable compared to those without alum,with S.aureus and S.epidermidis being the most vulnerable bacteria,as confirmed by FESEM images.Hence,tannin is a feasible alternative to harmful and nondegradable synthetic dyes and antibacterial agents.
文摘Ce-TiO_(2)-RGO composite photocatalyst was prepared by sol-gel method and ultrasonic treatment.The effect of Ce doping mass fraction on the degradation of textile printing and dyeing wastewater was studied.The catalysts were characterized by XRD,SEM,TEM,UV-vis and PL.The results showed that,Ce-TiO_(2)particles uniformly adsorbed on the GO surface,and the particle diameter of Ce-TiO_(2)was approximately 25-110 nm.After Ce doping,the absorption band edge of TiO_(2)-RGO composite photocatalyst was redshifted and the band gap was reduced.With the increase of Ce doping mass fraction,the PL intensity of Ce-TiO_(2)-RGO composite photocatalyst first decreased and then slightly increased,and the emission peak intensity of 6%Ce-TiO_(2)-RGO composite photocatalyst was the lowest at 410 nm and 470 nm.Taking textile printing and dyeing wastewater as the research object of degradation,the COD removal rate of 6%Ce-TiO_(2)-RGO reached the maximum of 82.21%at 180 min,and the COD value after degradation was 88.95 mg/L which was in line with the wastewater discharge standard.On the other hand,at 180 min,the degradation rate for textile printing and dyeing wastewater by 6%Ce-TiO_(2)-RGO also reached the maximum(99.21%).Therefore,the Ce-TiO_(2)-RGO composite photocatalyst showed great application potential in the treatment of textile dyeing wastewater.
基金supported by the National Natural Science Foundation of China(21471002)Scientific Research Projects of Universities in Anhui Province(2022AH040135)+1 种基金Natural Science Research Project for Anhui Universities(KJ2021A0509)Anhui Natural Science Foundation(2208085MC83).
文摘Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on amino-functionalized ZnFe_(2)O_(4) nanoparticles(ZnFe_(2)O_(4)-laccase)and its application for the degradation of textile dyes.Due to the existence of a large number of oxygen vacancies on the surface of the ZnFe_(2)O_(4) nanoparticles,negative ions accumulated on the magnetic carriers,which resulted in a harsh optimal pH value of the ZnFe_(2)O_(4)-laccase.Laccase activity assays revealed that the ZnFe_(2)O_(4)-laccase possessed superior pH and thermal stabilities,excellent reusability,and noticeable organic solvent tolerance.Meanwhile,the ZnFe_(2)O_(4) laccase presented efficient and sustainable degradation of high concentrations of textile dyes.The initial decoloration efficiencies of malachite green(MG),brilliant green(BG),azophloxine,crystal violet(CV),reactive blue 19(RB19),and procion red MX-5B were approximately 99.1%,95.0%,93.3%,87.4%,86.1%,and 85.3%,respectively.After 10 consecutive reuses,the degradation rates of the textile dyes still maintained about 98.2%,92.5%,83.2%,81.5%,79.8%and 65.9%,respectively.The excellent dye degradation properties indicate that the ZnFe_(2)O_(4)-laccase has a technical application in high concentrations of dyestuff treatment.
基金supported by the National Natural Science Foundation of China(22078138)the Natural Science Foundation of Jiangxi Province(20202ACBL203009).
文摘Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source materials.The chemical composition and structure of the catalysts was characterized by FT-IR,XRD,SEM,TEM,and XPS.The XPS characterization indicated that Ti_(3)C_(2)was partially oxidized to TiO_(2)during the composite process.As a result,an efficient direct-Z-scheme heterojunction structure consisting of the g-C_(3)N_(4)and TiO_(2)with Ti_(3)C_(2)as an electron bridge was constructed.The photocatalytic performance of the prepared catalysts was evaluated by degrading the Rhodamine B(RhB)wastewater.Compared with the single g-C_(3)N_(4),the g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)composite photocatalyst exhibited efficient and stable photocatalytic degradation ability,with a degradation efficiency as high as 99.2%for RhB under optimal conditions(2%Ti_(3)C_(2),pH=3).The high degradation performance of g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)for RhB was attributed to the combination of Ti_(3)C_(2),TiO_(2),and g-C_(3)N_(4)components,forming a direct-Z-scheme heterojunction with a high-speed electron transport channel structure.The role of Z-scheme heterojunctions in electron transport is verified by photoelectrochemical characterization,along with photoluminescence(PL).Our research provides a simple method to design photocatalysts by constructing direct-Z-scheme electron transport channels for highly efficient treatment of dye wastewater.
文摘Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences.The current study aims to utilize pineapple biowaste extract in producing bacterial cellulose acetate-based membranes with magnetic nanoparticles(Fe_(3)O_(4)nanoparticles)through the fermentation and esterification process and explore its characteristics.The bacterial cellulose fibrillation used a high-pressure homogenization procedure,and membranes were developed incorporating 0.25,0.50,0.75,and 1.0 wt.%of Fe3O4 nanoparticles as magnetic nanoparticle for functionalization.The membrane characteristics were measured in terms of Scanning Electron Microscope,X-ray diffraction,Fourier Transform Infrared,Vibrating Sample Magnetometer,antibacterial activity,bacterial adhesion and dye adsorption studies.The results indicated that the surface morphology of membrane changes where the bacterial cellulose acetate surface looks rougher.The crystallinity index of membrane increased from 54.34%to 68.33%,and the functional groups analysis revealed that multiple peak shifts indicated alterations in membrane functional groups.Moreover,adding Fe_(3)O_(4)-NPs into membrane exhibits paramagnetic behavior,increases tensile strength to 73%,enhances activity against E.coli and S.aureus,and is successful in removing bacteria from wastewater of the river to 67.4%and increases adsorption for anionic dyes like Congo Red and Acid Orange.
基金Fujian External Cooperation Project of Natural Science Foundation,China(No.2022I0042)。
文摘The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.
文摘Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% decolorization of Reactive blue 160 (RB160), Reactive black 5 (RB5) and Amido black 10B (AB10B) respectively. Further analysis using UV-vis, HPLC, and FTIR, <sup>1</sup>H NMR had shown the degradation of the dyes. Toxicity analysis of the metabolites was performed using seed germination and plant growth on two agriculturally important plants Guar (Cyamopsis tetragonoloba) and wheat (Triticum aestivum) as well as cytotoxicity analysis using the human keratinocyte cell line (HaCaT). The dye mix appeared inhibitory for seed germination (20% - 40%), whereas metabolites were non-inhibitory for germination. Treatment of HaCaT cells with of dye mix and metabolites led into 45% and ~100% of cell viability of HaCaT cells respectively. Therefore, metabolites following degradation of the dye mix were observed to be non-toxic.
文摘BLUE calico is a traditional Chinese handmade printed fabric.Dyed in indigo,it has a blue base with white patterns.Tongxiang,a city in east China’s Zhejiang Province,is well-known for printing and dyeing blue calico.The craft boasts a history of a millennium in the town with its heyday in the Tang(618-907)and Song(960-1279)dynasties.The technique was widely applied by the general public during the Ming and Qing dynasties(1368-1911).
文摘Textiles are one of the oldest industries in the world which has been manufacturing fabrics and materials needed for various purposes.However,the industry has been confronted with some problems regarding its pollution;specifically the dyeing and finishing processes.As for the given issues,there has been a trend in recent years to come up with more environmentally friendly solutions.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21-104-0-23)。
文摘4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a crucial derivative of BODIPY scaffold that has the favorable optical properties and a significant spectral redshift. The photophysical properties can be tuned by molecular design, and the attenuation path of the excited state energy release of absorbed light energy can be well controlled via structural modifications, enabling tailored application. It has been extensively employed in life medicine fields including fluorescence imaging diagnosis, photodynamic therapy photosensitizer and photothermal therapy reagent and so forth. Extensive research and review have been performed in these areas. However, BODIPYs/aza-BODIPYs have a significant role in energy, catalysis, optoelectronics, photo-responsive materials and other fields. Nevertheless, there are relatively few studies and reviews in these fields on the modification and application based on BODIPY/aza-BODIPY scaffold. Herein, in this review we summarized the application of BODIPY/aza-BODIPY in the aforementioned fields, with the molecular regulation of dye as the foundation and the utilization in the above fields as the objective, in the intention of providing inspiration for the exploration of innovative BODIPY/aza-BODIPY research in the field of light resource conversion and functional materials.
文摘Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.