Recent climate dynamics denote patterns and variations in climatic conditions and associated cryospheric changes in the Pamir region,affecting downstream ecosystems and communities.The present investigation describes ...Recent climate dynamics denote patterns and variations in climatic conditions and associated cryospheric changes in the Pamir region,affecting downstream ecosystems and communities.The present investigation describes changes in Baralmos glacier and supraglacial lakes,along with related hazards,using meteorological observations,reanalysis products,and high-resolution satellite imagery from 2002 to 2022.Moreover,observations using Unmanned Aerial Vehicles(UAVs)were conducted between 2020 and 2022 to document recent variations.Reanalysis data suggested that there are no obvious trends in annual air temperature and precipitation except for a significant temperature rise in July(the warmest month)of about 1.34°C/decade(p<0.05)and precipitation decrease in December(p<0.05).During the last two decades of investigation,lake areas expanded from 20500 to 62800±21 m2,representing an approximately threefold increase,leading to increased mudflows in the Surkhob river and causing severe damage to property and infrastructures,most prominently during 2020 and 2022.The UAV data reveal an average decrease of-2.7±0.5 m in surface elevation downstream of Baralmos glacier between 2020 and 2022.This study is vital for implementing more intensive measures of the glacial environment and defining suitable mitigation strategies in the Pamir region.展开更多
The present study aims to examine the suitability of two commonly used assumptions that simplify modelling metoceanconditions for designing offshore wind turbines in the South China Sea (SCS). The first assumption ass...The present study aims to examine the suitability of two commonly used assumptions that simplify modelling metoceanconditions for designing offshore wind turbines in the South China Sea (SCS). The first assumption assumes thatjoint N-year extreme wind and wave events can be independently estimated and subsequently combined. The secondone assumes peak wind and waves can be modelled as occurring simultaneously during a tropical cyclone (TC) event.To better understand the potential TC activity, a set of 10000 years synthetic TC events are generated. The wind fieldmodel and the Mike 21 spectral wave model are employed to model the TC-induced hazards. Subsequently, theeffect of the assumptions is evaluated by analyzing the peak structural response of both monopile and semisubmersibleoffshore wind turbines during TC events. The results demonstrate that the examined assumptions are generally accurate.By assessing the implications of these assumptions, valuable insights are obtained, which can inform andimprove the modelling of TC-induced hazards in the SCS region.展开更多
Landslides are pervasive geohazards that pose a serious threat to human lives,property,and crucial engineering constructions.Annually,landslides lead to tens of thousands of fatalities(see the paper of"List of ty...Landslides are pervasive geohazards that pose a serious threat to human lives,property,and crucial engineering constructions.Annually,landslides lead to tens of thousands of fatalities(see the paper of"List of typical catastrophic landslides from March 2004 to February 2024"in this issue,doi:10.31035/cg2024079)and cause economic damages amounting to billions of dollars around the world,as well as disrupting crucial infrastructures such as railways,highways。展开更多
Background: Automobile mechanics face different occupational hazards, which can have a wide range of physical and biological impacts depending on the frequency, intensity, and length of exposure. This study looked at ...Background: Automobile mechanics face different occupational hazards, which can have a wide range of physical and biological impacts depending on the frequency, intensity, and length of exposure. This study looked at the dangers and hazards that automobile mechanics in Kugbo Mechanic village in the Federal Capital Territory of Nigeria faced in their jobs. Research Objectives: The specific objectives were to determine the typical occupational risks faced by Kugbo automobile mechanics, evaluate the degree and risk of related health problems and injuries among Kugbo mechanics workers, examine the application of PPE and additional safety precautions among Kugbo mechanics, and assess Kugbo automobile workers’ understanding of the consequences of operating without PPE. Methods: A cross-sectional descriptive survey was conducted using purposeful sampling. A validated structured questionnaire was administered to 200 automobile workers at risk of exposure to hazards. The questionnaire covered socio-demographics, types of risk exposure, perceptions of their vulnerability, and the use of personal protective equipment. The data was analysed using descriptive and inferential statistics in Statistical Packages for Social version 26. Cross tabulation was used to identify patterns and associations between variables, and the Relative importance Index method was used to determine the relative importance of adherence to PPE and other safety issues. Results: Findings show that 5.1% of the respondents had completed secondary school, 25.3% had attended a technical school, 36.9% had completed primary school, and 32.8% had no formal education. Long exposure makes automobile workers more vulnerable to illnesses attributed to their job, as 91.9% work long hours sitting and 78.3% work long hours standing. The overall mean score of 3.72 shows that most respondents did not agree that automobile workers wear PPEs and follow other safety precautions. The medical issues listed include burns on the body, depression, heart illness, severe headaches and abdominal pain, and poor vision. Conclusion: The findings reveal that automobile workers are exposed to several risks and hazards that have resulted in various health-related problems. Therefore, using PPEs and adhering to occupational safety practices will mitigate their exposure to workplace hazards.展开更多
Geological Hazards Investigation and Evaluation is the core course of Environmental Geological Engineering,aiming to cultivate skilled talents with solid theoretical knowledge and excellent practical skills.At present...Geological Hazards Investigation and Evaluation is the core course of Environmental Geological Engineering,aiming to cultivate skilled talents with solid theoretical knowledge and excellent practical skills.At present,the course faces several issues,including a teaching environment disconnected from real-world work scenarios,course content that deviates from job-related tasks,a lack of digital teaching resources,and reliance on a single teaching method,leading to students’poor feedback from employers.Based on the concept of outcome-based education,the course team of Geological Hazards Investigation and Evaluation establishes a“five-step double-rotation”blended teaching model with the help of a Small Private Online Course platform.The program is designed to improve the teaching environment and expand the digitalized teaching resources in order to improve students’learning motivation,enhance learning effectiveness,and cultivate skillful talents who meet employers’satisfaction.展开更多
INTRODUCTION Occupational safety and health (OSH) is generally the anticipation, recognition, evaluation, and control of hazards arising in or from the workplace. The study sought to assess and evaluate occupational h...INTRODUCTION Occupational safety and health (OSH) is generally the anticipation, recognition, evaluation, and control of hazards arising in or from the workplace. The study sought to assess and evaluate occupational health and safety hazards experienced among health workers in the Bono region of Ghana. METHODOLOGY The study was descriptive cross-sectional quantitative study. Data was from two hundred (200) health workers and was analyzed using the binary logistic regression analysis. RESULTS The findings from the study show that risk factors associated with biological hazards were clinical staff [OR = 2.487 (1.146 - 5.397), p = 0.021], poor maintenance of hospital items [OR = 0.446 (0.240 - 0.831), p = 0.011], assault (verbal) abuse [OR = 2.581 (1.317 - 5.059), p = 0.006] and extreme pressure from work [OR = 2.975 (1.519 - 5.829), p = 0.001]. Non-biological hazards were associated with being single [OR = 0.499 (0.263 - 0.947), p = 0.034], being verbally assaulted [OR = 3.581 (1.865 - 6.876), p CONCLUSION Risk factors related with biological hazards include poor maintenance of hospital items and extreme pressure from work whereas non-biological hazards were associated with being single, being verbally assaulted. Clinical healthcare providers are more vulnerable to occupational health and safety hazards. The study recommends the provision of strategic policies to promote and protect the workers’ health based on the development of the epidemiological profile of health, needs to be readjusted and strengthened.展开更多
Gamma-ray spectroscopy based on a 100% efficiency hyper-pure germanium detector was used to evaluate the activity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup...Gamma-ray spectroscopy based on a 100% efficiency hyper-pure germanium detector was used to evaluate the activity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup>K natural radionuclides in sedimentary, conglomerate, igneous and sedi-ments rock samples collected from four different locations in Eastern desert in Egypt. The obtained activity concentrations are used to evaluate the radi-ological hazards indices, absorbed dose rate, annual effective dose equivalent in air, radium equivalent, external and internal hazard index, radiation level index, annual gonadal dose equivalent, excess lifetime cancer risk and expo-sure rate. The results show that 1) the absorbed dose rate depends on the rock type, 2) the annual effective dose equivalent in air in 71% of sample below 20 mSvy<sup>-1</sup> (permissible limit for workers), 3) the conglomerate rocks show low radioactivity level, 4) sedimentary rocks are rich in radium while igneous rocks are rich in thorium and the sediments rocks are rich in both radium and thorium.展开更多
Background: Healthcare workers are challenged by an imposing group of occupational hazards. These hazards include exposure to biological and non-biological hazards like ionizing radiation, stress, injury, infectious a...Background: Healthcare workers are challenged by an imposing group of occupational hazards. These hazards include exposure to biological and non-biological hazards like ionizing radiation, stress, injury, infectious agents, and chemicals. The aim of this study was to assess common occupational hazards among health workers at the Department of Health Services (DHS), Federal University of Technology, Owerri. Methods: A hospital-based cross-sectional study design was employed for the study, and a self-administered questionnaire was used for data collection. The SPSS Version 22.0 software was used for the analysis of the descriptive statistics obtained from the study. This study included both clinical and non-clinical health workers. A purposive sampling technique was used in recruiting a total of 94 respondents who participated in the study from September 2020 to April 2021. Results: A total of 94 respondents who participated in the study and among the participants, 33.3% (31) of the respondents were aged 31 - 40 years, and the majority of the health workers, 43.6% (41) had stayed between 1 - 5 years. Also, 92.6% (87) of the health workers have heard of occupational hazards. The study showed that 84.0% (79) of health workers had good knowledge of common occupational hazards. Biological hazards among health workers are 47.9% (45) cuts and wounds, 29.8% (28) direct contact with contaminated specimens/hazardous materials, and 26.6% (26) sharp related injuries, while for non-biological hazards, 44.7% (42) have slipped, tripped or fallen, and 35.1% (33) have been stressed. Common safety measures include 86.2% (81) washing their hands regularly;78.7% (74) using hand gloves;and 85.1% (80) agreeing they use face masks. Conclusion: Despite good knowledge of occupational hazards, participants at DHS were faced with certain hazards. It is recommended that the university, government, and policymakers revise and implement actions to provide health workers at DHS with equipment to encourage safety in work activity.展开更多
Rockburst hazard in mining industry all over the world is one of the most severe hazards. It is becoming increasingly common because of the ever-growing depths of mining operations accompanied by the increasing streng...Rockburst hazard in mining industry all over the world is one of the most severe hazards. It is becoming increasingly common because of the ever-growing depths of mining operations accompanied by the increasing strength of rocks. One of the most difficult issues is to predict this hazard before the mining operations, whether geophysical investigations have been conducted or not. Polish experience in this field shows that in such cases an effective solution can be the geomechanical method. Therefore, extensive studies on rockburst hazard should focus on three main aspects:(1) rock mass and rock(and coal)predisposition to rockburst–laboratory tests and empirical analyses based on lithology,(2) identification of the potential places with stress and elastic energy concentration in the rock mass within the area planned for exploitation, and(3) the assessment of the impact of mining tremors on the surface. This preliminary geomechanical analysis assesses the propensity of the rock mass to dynamic breakage and provides quantitatively the level of rockburst hazard. The paper presents Polish experience in rockburst hazard assessment with the use of geomechanical method, as well as some solutions and examples of such analyses.展开更多
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective...The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.展开更多
Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of g...Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of gas geology,structural geology,coal petrology and rock tests,we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions. The result shows that the areas with type Ⅲ or Ⅳ soft roofs are the most dangerous areas where gas outburst most likely can take place. Therefore,countermeasures should be taken in these areas to prevent gas outbursts.展开更多
Conducting a hazard assessment for secondary mountain hazards is the technical basis for reconstructing destroyed highways and for disaster prevention.It is necessary to consider the role and influence of structural e...Conducting a hazard assessment for secondary mountain hazards is the technical basis for reconstructing destroyed highways and for disaster prevention.It is necessary to consider the role and influence of structural engineering measures as an important assessment factor.In this study,based on six substantial field investigations conducted between July 2008 and July 2012,a 2 km wide zone along both sides of the Dujiangyan Wenchuan(Du Wen) Highway was selected as the study area.Microgeomorphic units and small watersheds in the study area were extracted with GIS software and used as basic assessment units.Through field investigations,remote sensing surveys and experimental analysis,a structural engineering effectiveness assessment was conducted using the technique of principal component analysis.The results showed the following:1) A total of 491 collapses,12 landslides,32 slope debris flows and 17 gully debris flows were scatted across the study area.The total overall areal density of all mountain hazards was 25.7%.The distribution of secondary hazards was influenced mainly by seismic intensity,active fault zones,lithology,slope and altitude.More than 70% of secondary hazards occurred in zones with a seismic intensity of XI,a distance to the fault zone of between 0 and 25 km,a slope between 25° and 50°,and an altitude of between 1,000 m and 1,800 m.2) Different structural engineering measures play different roles and effects in controlling different types and scales of secondary mountain hazards.3) With a secondary mountain hazard area of 128.1 km2and an areal density of 34.9%,medium,high and very high hazard zones accounted for 74% of the study area and were located on the high,steep slopes along both sides of the highway.The low hazard zone was located mainly in the valley floor,on gentle slope platforms and at locations 1.5 km away from the highway the hazard area was 45 km2and the areal density was 3.3%.4) The methodology for hazard assessment of secondary mountain hazards,which is based on five factors,solves such key technical problems as the selection of assessment units,multi-source data fusion,and the weight calculation for each assessment index.This study provides a new and more effective method for assessing secondary mountain hazards along highways,and the proposed models fit well with validation data and field observations.The findings were applied to reconstruction and disaster mitigation in the case of the Du Wen Highway and proved to be feasible.展开更多
Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided ...Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km^2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework.展开更多
There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of whic...There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 kin and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5-3.0 m along the Yingxiu- Beichuan co-seismic fault, and 1.5-1.1 m along the Doujiangyan-Hanwang fault. Movement of the coseismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0-20 km from co-seismic fault.展开更多
Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, t...Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, the mountain canyon high danger zone of east and southeast Tibet, the plateau mountain lake basin and valley middle danger zone of south Tibet, and the Plateau Mountain lake basin low danger zone of south Tibet. This paper takes the debris flow, collapse, landslide as the key points to analyze the distribution characteristics of geological hazards, and analyze the factors which influence the distribution of geological hazards, such as terrain landform, formation lithology, geologic structure pattern, precipitation, earthquake, human activity and so on. finally, as a conclusion., in whole Tibet, the geological hazards are more in southeast than in northwest, more in mountainous area which in the edge of plateau and river valley than in the interior of plateau and lake basin. And most hazards distribute in the regions where human activity is stronger than in other regions, for example towns or strips along the highway.展开更多
As a discipline,the science of natural hazards and disaster risk aims to explain the spatial-temporal pattern,process and mechanism,emergency response and risk mitigation of natural hazards,which requires a multidisci...As a discipline,the science of natural hazards and disaster risk aims to explain the spatial-temporal pattern,process and mechanism,emergency response and risk mitigation of natural hazards,which requires a multidisci-plinary and interdisciplinary approach.With the support of Natural Science Finance of China(NSFC)and Chinese Academy of Sciences(CAS),in-depth research and systematic analysis on natural hazards and disaster risk were conducted.In this paper,the state of the art in research on natural hazards is summarized from seven aspects:formation process,mechanism and dynamic of natural hazards,disaster risk assessment,forecast,monitoring and early warning,disaster mitigation,emergency treatment and rescue,risk management and post-disaster re-construction.The trends within the natural hazards and disaster risk as a discipline were identified,along with existing shortcomings and significant gaps that need to be addressed.This paper highlighted:1)the scientific challenges including the frontier scientific issues and technological gaps on natural hazards and disaster risk dis-cipline from 2025 to 2035 in China,and 2)the proposal to develop a systemic and holistic natural hazards and disaster risk discipline.展开更多
Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national e...Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.展开更多
The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and...The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and has been highly active since the Cenozoic. The well–known Great Huaxian County Earthquake of 1556 occurred on the Huashan piedmont fault. This earthquake, which claimed the lives of approximately 830000 people, is one of the few large earthquakes known to have occurred on a high–angle normal fault. The Huashan piedmont fault is a typical active normal fault that can be used to study tectonic activity and the associated hazards. In this study, the types and characteristics of late Quaternary deformation along this fault are discussed from geological investigations, historical research and comprehensive analysis. On the basis of its characteristics and activity, the fault can be divided into three sections, namely eastern, central and western. The eastern and western sections display normal slip. Intense deformation has occurred along the two sections during the Quaternary; however, no deformation has occurred during the Holocene. The central section has experienced significant high–angle normal fault activity during the Quaternary, including the Holocene. Holocene alluvial fans and loess cut by the fault have been identified at the mouths of many stream valleys of the Huashan Mountains along the central section of the Huashan piedmont fault zone. Of the three sections of the Huashan piedmont fault, the central section is the most active and was very active during the late Quaternary. The rate of normal dip–slip was 1.67–2.71±0.11 mm/a in the Holocene and 0.61±0.15 mm/a during the Mid–Late Pleistocene. As is typical of normal faults, the late Quaternary activity of the Huashan piedmont fault has produced a set of disasters, which include frequent earthquakes, collapses, landslides, mudslides and ground fissures. Ground fissures mainly occur on the hanging–wall of the Huashan piedmont fault, with landslides, collapses and mudslides occurring on the footwall.展开更多
An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures...An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures to fight them at the stage of designing coal extraction.Designing the production of a coal seams in the conditions of associated methane and spontaneous fires hazards in Polish hard coal mines requires elaboration of the design standards for coal panels in gassy coal seams.This paper presents the guidelines on how to design production in the conditions of associated methane and spontaneous fire hazards.Presented tools and methodology since the very first research were many times verified by daily mining operations in the conditions of associated methane and spontaneous fire hazards,which confirms their significant contribution to the development of safe and economical mining operations.展开更多
Based on inspecting and investigating the situation of biological hazards of ancient architecture such as north-south building,Fuxi temple and Yuquan Temple,the disease kinds,their damaging ranges and hazard degrees w...Based on inspecting and investigating the situation of biological hazards of ancient architecture such as north-south building,Fuxi temple and Yuquan Temple,the disease kinds,their damaging ranges and hazard degrees were recorded.The results showed that timber structures had some problems such as colored drawing of purlin post,Fang,bucket arches had fallen off;rot,infesting,color spot,sediments on the surface,rupture,warp,breeding plant etc.展开更多
基金funded by the Gansu Provincial Science and Technology Program(22ZD6FA005)Gansu Postdoctoral Science Foundation(Grant number-E339880204)。
文摘Recent climate dynamics denote patterns and variations in climatic conditions and associated cryospheric changes in the Pamir region,affecting downstream ecosystems and communities.The present investigation describes changes in Baralmos glacier and supraglacial lakes,along with related hazards,using meteorological observations,reanalysis products,and high-resolution satellite imagery from 2002 to 2022.Moreover,observations using Unmanned Aerial Vehicles(UAVs)were conducted between 2020 and 2022 to document recent variations.Reanalysis data suggested that there are no obvious trends in annual air temperature and precipitation except for a significant temperature rise in July(the warmest month)of about 1.34°C/decade(p<0.05)and precipitation decrease in December(p<0.05).During the last two decades of investigation,lake areas expanded from 20500 to 62800±21 m2,representing an approximately threefold increase,leading to increased mudflows in the Surkhob river and causing severe damage to property and infrastructures,most prominently during 2020 and 2022.The UAV data reveal an average decrease of-2.7±0.5 m in surface elevation downstream of Baralmos glacier between 2020 and 2022.This study is vital for implementing more intensive measures of the glacial environment and defining suitable mitigation strategies in the Pamir region.
基金supported by the Guangdong Provincial Key Research and Development Program(Grant No.2022B0101100001).
文摘The present study aims to examine the suitability of two commonly used assumptions that simplify modelling metoceanconditions for designing offshore wind turbines in the South China Sea (SCS). The first assumption assumes thatjoint N-year extreme wind and wave events can be independently estimated and subsequently combined. The secondone assumes peak wind and waves can be modelled as occurring simultaneously during a tropical cyclone (TC) event.To better understand the potential TC activity, a set of 10000 years synthetic TC events are generated. The wind fieldmodel and the Mike 21 spectral wave model are employed to model the TC-induced hazards. Subsequently, theeffect of the assumptions is evaluated by analyzing the peak structural response of both monopile and semisubmersibleoffshore wind turbines during TC events. The results demonstrate that the examined assumptions are generally accurate.By assessing the implications of these assumptions, valuable insights are obtained, which can inform andimprove the modelling of TC-induced hazards in the SCS region.
文摘Landslides are pervasive geohazards that pose a serious threat to human lives,property,and crucial engineering constructions.Annually,landslides lead to tens of thousands of fatalities(see the paper of"List of typical catastrophic landslides from March 2004 to February 2024"in this issue,doi:10.31035/cg2024079)and cause economic damages amounting to billions of dollars around the world,as well as disrupting crucial infrastructures such as railways,highways。
文摘Background: Automobile mechanics face different occupational hazards, which can have a wide range of physical and biological impacts depending on the frequency, intensity, and length of exposure. This study looked at the dangers and hazards that automobile mechanics in Kugbo Mechanic village in the Federal Capital Territory of Nigeria faced in their jobs. Research Objectives: The specific objectives were to determine the typical occupational risks faced by Kugbo automobile mechanics, evaluate the degree and risk of related health problems and injuries among Kugbo mechanics workers, examine the application of PPE and additional safety precautions among Kugbo mechanics, and assess Kugbo automobile workers’ understanding of the consequences of operating without PPE. Methods: A cross-sectional descriptive survey was conducted using purposeful sampling. A validated structured questionnaire was administered to 200 automobile workers at risk of exposure to hazards. The questionnaire covered socio-demographics, types of risk exposure, perceptions of their vulnerability, and the use of personal protective equipment. The data was analysed using descriptive and inferential statistics in Statistical Packages for Social version 26. Cross tabulation was used to identify patterns and associations between variables, and the Relative importance Index method was used to determine the relative importance of adherence to PPE and other safety issues. Results: Findings show that 5.1% of the respondents had completed secondary school, 25.3% had attended a technical school, 36.9% had completed primary school, and 32.8% had no formal education. Long exposure makes automobile workers more vulnerable to illnesses attributed to their job, as 91.9% work long hours sitting and 78.3% work long hours standing. The overall mean score of 3.72 shows that most respondents did not agree that automobile workers wear PPEs and follow other safety precautions. The medical issues listed include burns on the body, depression, heart illness, severe headaches and abdominal pain, and poor vision. Conclusion: The findings reveal that automobile workers are exposed to several risks and hazards that have resulted in various health-related problems. Therefore, using PPEs and adhering to occupational safety practices will mitigate their exposure to workplace hazards.
基金Scientific Research Fund of Hunan Provincial Education Department Excellent Youth Project(23B0953)Hunan Province Vocational College Education and Teaching Reform Research Project(ZJGB2022427)。
文摘Geological Hazards Investigation and Evaluation is the core course of Environmental Geological Engineering,aiming to cultivate skilled talents with solid theoretical knowledge and excellent practical skills.At present,the course faces several issues,including a teaching environment disconnected from real-world work scenarios,course content that deviates from job-related tasks,a lack of digital teaching resources,and reliance on a single teaching method,leading to students’poor feedback from employers.Based on the concept of outcome-based education,the course team of Geological Hazards Investigation and Evaluation establishes a“five-step double-rotation”blended teaching model with the help of a Small Private Online Course platform.The program is designed to improve the teaching environment and expand the digitalized teaching resources in order to improve students’learning motivation,enhance learning effectiveness,and cultivate skillful talents who meet employers’satisfaction.
文摘INTRODUCTION Occupational safety and health (OSH) is generally the anticipation, recognition, evaluation, and control of hazards arising in or from the workplace. The study sought to assess and evaluate occupational health and safety hazards experienced among health workers in the Bono region of Ghana. METHODOLOGY The study was descriptive cross-sectional quantitative study. Data was from two hundred (200) health workers and was analyzed using the binary logistic regression analysis. RESULTS The findings from the study show that risk factors associated with biological hazards were clinical staff [OR = 2.487 (1.146 - 5.397), p = 0.021], poor maintenance of hospital items [OR = 0.446 (0.240 - 0.831), p = 0.011], assault (verbal) abuse [OR = 2.581 (1.317 - 5.059), p = 0.006] and extreme pressure from work [OR = 2.975 (1.519 - 5.829), p = 0.001]. Non-biological hazards were associated with being single [OR = 0.499 (0.263 - 0.947), p = 0.034], being verbally assaulted [OR = 3.581 (1.865 - 6.876), p CONCLUSION Risk factors related with biological hazards include poor maintenance of hospital items and extreme pressure from work whereas non-biological hazards were associated with being single, being verbally assaulted. Clinical healthcare providers are more vulnerable to occupational health and safety hazards. The study recommends the provision of strategic policies to promote and protect the workers’ health based on the development of the epidemiological profile of health, needs to be readjusted and strengthened.
文摘Gamma-ray spectroscopy based on a 100% efficiency hyper-pure germanium detector was used to evaluate the activity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup>K natural radionuclides in sedimentary, conglomerate, igneous and sedi-ments rock samples collected from four different locations in Eastern desert in Egypt. The obtained activity concentrations are used to evaluate the radi-ological hazards indices, absorbed dose rate, annual effective dose equivalent in air, radium equivalent, external and internal hazard index, radiation level index, annual gonadal dose equivalent, excess lifetime cancer risk and expo-sure rate. The results show that 1) the absorbed dose rate depends on the rock type, 2) the annual effective dose equivalent in air in 71% of sample below 20 mSvy<sup>-1</sup> (permissible limit for workers), 3) the conglomerate rocks show low radioactivity level, 4) sedimentary rocks are rich in radium while igneous rocks are rich in thorium and the sediments rocks are rich in both radium and thorium.
文摘Background: Healthcare workers are challenged by an imposing group of occupational hazards. These hazards include exposure to biological and non-biological hazards like ionizing radiation, stress, injury, infectious agents, and chemicals. The aim of this study was to assess common occupational hazards among health workers at the Department of Health Services (DHS), Federal University of Technology, Owerri. Methods: A hospital-based cross-sectional study design was employed for the study, and a self-administered questionnaire was used for data collection. The SPSS Version 22.0 software was used for the analysis of the descriptive statistics obtained from the study. This study included both clinical and non-clinical health workers. A purposive sampling technique was used in recruiting a total of 94 respondents who participated in the study from September 2020 to April 2021. Results: A total of 94 respondents who participated in the study and among the participants, 33.3% (31) of the respondents were aged 31 - 40 years, and the majority of the health workers, 43.6% (41) had stayed between 1 - 5 years. Also, 92.6% (87) of the health workers have heard of occupational hazards. The study showed that 84.0% (79) of health workers had good knowledge of common occupational hazards. Biological hazards among health workers are 47.9% (45) cuts and wounds, 29.8% (28) direct contact with contaminated specimens/hazardous materials, and 26.6% (26) sharp related injuries, while for non-biological hazards, 44.7% (42) have slipped, tripped or fallen, and 35.1% (33) have been stressed. Common safety measures include 86.2% (81) washing their hands regularly;78.7% (74) using hand gloves;and 85.1% (80) agreeing they use face masks. Conclusion: Despite good knowledge of occupational hazards, participants at DHS were faced with certain hazards. It is recommended that the university, government, and policymakers revise and implement actions to provide health workers at DHS with equipment to encourage safety in work activity.
文摘Rockburst hazard in mining industry all over the world is one of the most severe hazards. It is becoming increasingly common because of the ever-growing depths of mining operations accompanied by the increasing strength of rocks. One of the most difficult issues is to predict this hazard before the mining operations, whether geophysical investigations have been conducted or not. Polish experience in this field shows that in such cases an effective solution can be the geomechanical method. Therefore, extensive studies on rockburst hazard should focus on three main aspects:(1) rock mass and rock(and coal)predisposition to rockburst–laboratory tests and empirical analyses based on lithology,(2) identification of the potential places with stress and elastic energy concentration in the rock mass within the area planned for exploitation, and(3) the assessment of the impact of mining tremors on the surface. This preliminary geomechanical analysis assesses the propensity of the rock mass to dynamic breakage and provides quantitatively the level of rockburst hazard. The paper presents Polish experience in rockburst hazard assessment with the use of geomechanical method, as well as some solutions and examples of such analyses.
基金Supported by National Natural Science Foundation of China (50625927,50727904)the National Basic Research Program (973) of China (2007CB209407)Ministry of Communications’Scientific and Technological Program of Transportation Development in Western China(2009318000008)
文摘The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.
文摘Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of gas geology,structural geology,coal petrology and rock tests,we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions. The result shows that the areas with type Ⅲ or Ⅳ soft roofs are the most dangerous areas where gas outburst most likely can take place. Therefore,countermeasures should be taken in these areas to prevent gas outbursts.
基金supported by the National Natural Science Foundation of China(Grant No.40901273)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province(Changsha University of Science and Technology,Grant No.kfj120404)+1 种基金the Western China Communication Science and Technology Projection(Grant No.2008-318-221-56)the Graduate Innovation Foundation of Hunan University of Science and Technology(Grant No.S120033 and S120034)
文摘Conducting a hazard assessment for secondary mountain hazards is the technical basis for reconstructing destroyed highways and for disaster prevention.It is necessary to consider the role and influence of structural engineering measures as an important assessment factor.In this study,based on six substantial field investigations conducted between July 2008 and July 2012,a 2 km wide zone along both sides of the Dujiangyan Wenchuan(Du Wen) Highway was selected as the study area.Microgeomorphic units and small watersheds in the study area were extracted with GIS software and used as basic assessment units.Through field investigations,remote sensing surveys and experimental analysis,a structural engineering effectiveness assessment was conducted using the technique of principal component analysis.The results showed the following:1) A total of 491 collapses,12 landslides,32 slope debris flows and 17 gully debris flows were scatted across the study area.The total overall areal density of all mountain hazards was 25.7%.The distribution of secondary hazards was influenced mainly by seismic intensity,active fault zones,lithology,slope and altitude.More than 70% of secondary hazards occurred in zones with a seismic intensity of XI,a distance to the fault zone of between 0 and 25 km,a slope between 25° and 50°,and an altitude of between 1,000 m and 1,800 m.2) Different structural engineering measures play different roles and effects in controlling different types and scales of secondary mountain hazards.3) With a secondary mountain hazard area of 128.1 km2and an areal density of 34.9%,medium,high and very high hazard zones accounted for 74% of the study area and were located on the high,steep slopes along both sides of the highway.The low hazard zone was located mainly in the valley floor,on gentle slope platforms and at locations 1.5 km away from the highway the hazard area was 45 km2and the areal density was 3.3%.4) The methodology for hazard assessment of secondary mountain hazards,which is based on five factors,solves such key technical problems as the selection of assessment units,multi-source data fusion,and the weight calculation for each assessment index.This study provides a new and more effective method for assessing secondary mountain hazards along highways,and the proposed models fit well with validation data and field observations.The findings were applied to reconstruction and disaster mitigation in the case of the Du Wen Highway and proved to be feasible.
基金The National Basic Research Program (973 program) (2002CB111506)the R&D Infrastructure and Facility Devel-opment Program (2005DKA32300)
文摘Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km^2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework.
基金supported by the Department of Science and Technology and International Cooperation,The Ministry of Land and Resources,P.R.ChinaFinancial supported by the research of"Longmenshan fault zone and dynamical condition analysis of Wenchuan earthquake"(No.2008CB425702)
文摘There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 kin and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5-3.0 m along the Yingxiu- Beichuan co-seismic fault, and 1.5-1.1 m along the Doujiangyan-Hanwang fault. Movement of the coseismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0-20 km from co-seismic fault.
文摘Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, the mountain canyon high danger zone of east and southeast Tibet, the plateau mountain lake basin and valley middle danger zone of south Tibet, and the Plateau Mountain lake basin low danger zone of south Tibet. This paper takes the debris flow, collapse, landslide as the key points to analyze the distribution characteristics of geological hazards, and analyze the factors which influence the distribution of geological hazards, such as terrain landform, formation lithology, geologic structure pattern, precipitation, earthquake, human activity and so on. finally, as a conclusion., in whole Tibet, the geological hazards are more in southeast than in northwest, more in mountainous area which in the edge of plateau and river valley than in the interior of plateau and lake basin. And most hazards distribute in the regions where human activity is stronger than in other regions, for example towns or strips along the highway.
基金This work was supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-DQC006)the Major Program of National Natural Science Foundation of China(Grant No.41790432)+1 种基金the National Natural Science Foundation of China(Grant No.L1924041)Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences(Grand No.XK2019DXC006).
文摘As a discipline,the science of natural hazards and disaster risk aims to explain the spatial-temporal pattern,process and mechanism,emergency response and risk mitigation of natural hazards,which requires a multidisci-plinary and interdisciplinary approach.With the support of Natural Science Finance of China(NSFC)and Chinese Academy of Sciences(CAS),in-depth research and systematic analysis on natural hazards and disaster risk were conducted.In this paper,the state of the art in research on natural hazards is summarized from seven aspects:formation process,mechanism and dynamic of natural hazards,disaster risk assessment,forecast,monitoring and early warning,disaster mitigation,emergency treatment and rescue,risk management and post-disaster re-construction.The trends within the natural hazards and disaster risk as a discipline were identified,along with existing shortcomings and significant gaps that need to be addressed.This paper highlighted:1)the scientific challenges including the frontier scientific issues and technological gaps on natural hazards and disaster risk dis-cipline from 2025 to 2035 in China,and 2)the proposal to develop a systemic and holistic natural hazards and disaster risk discipline.
基金financially supported by National Key R&D Program of China (No. 2018YFC1505201)National Natural Science Foundation of China (No. 41901008)+2 种基金Open Fund Project of Key Laboratory of Mountain Hazards and Surface Processes of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities (Grant NO. 2682018CX05)financially supported by China Scholarship Council
文摘Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.
基金granted by the Geological Investigation Project of China Geological Survey (Grant Nos.1212011120102 and 12120115003501)
文摘The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and has been highly active since the Cenozoic. The well–known Great Huaxian County Earthquake of 1556 occurred on the Huashan piedmont fault. This earthquake, which claimed the lives of approximately 830000 people, is one of the few large earthquakes known to have occurred on a high–angle normal fault. The Huashan piedmont fault is a typical active normal fault that can be used to study tectonic activity and the associated hazards. In this study, the types and characteristics of late Quaternary deformation along this fault are discussed from geological investigations, historical research and comprehensive analysis. On the basis of its characteristics and activity, the fault can be divided into three sections, namely eastern, central and western. The eastern and western sections display normal slip. Intense deformation has occurred along the two sections during the Quaternary; however, no deformation has occurred during the Holocene. The central section has experienced significant high–angle normal fault activity during the Quaternary, including the Holocene. Holocene alluvial fans and loess cut by the fault have been identified at the mouths of many stream valleys of the Huashan Mountains along the central section of the Huashan piedmont fault zone. Of the three sections of the Huashan piedmont fault, the central section is the most active and was very active during the late Quaternary. The rate of normal dip–slip was 1.67–2.71±0.11 mm/a in the Holocene and 0.61±0.15 mm/a during the Mid–Late Pleistocene. As is typical of normal faults, the late Quaternary activity of the Huashan piedmont fault has produced a set of disasters, which include frequent earthquakes, collapses, landslides, mudslides and ground fissures. Ground fissures mainly occur on the hanging–wall of the Huashan piedmont fault, with landslides, collapses and mudslides occurring on the footwall.
文摘An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures to fight them at the stage of designing coal extraction.Designing the production of a coal seams in the conditions of associated methane and spontaneous fires hazards in Polish hard coal mines requires elaboration of the design standards for coal panels in gassy coal seams.This paper presents the guidelines on how to design production in the conditions of associated methane and spontaneous fire hazards.Presented tools and methodology since the very first research were many times verified by daily mining operations in the conditions of associated methane and spontaneous fire hazards,which confirms their significant contribution to the development of safe and economical mining operations.
文摘Based on inspecting and investigating the situation of biological hazards of ancient architecture such as north-south building,Fuxi temple and Yuquan Temple,the disease kinds,their damaging ranges and hazard degrees were recorded.The results showed that timber structures had some problems such as colored drawing of purlin post,Fang,bucket arches had fallen off;rot,infesting,color spot,sediments on the surface,rupture,warp,breeding plant etc.