Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil wate...Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.展开更多
The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holdin...The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.展开更多
Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs ...Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs downstream over a gentle slope, the siltation of the riverbed is induced and the sediment particles can move upstream rapidly in the form of a retrograde sand wave, resulting in a higher water level along the river. To further study the complex mechanisms of this problem, a sediment mass model in the framework of the Smoothed Particle Hydrodynamics(SPH) method was presented to simulate the riverbed evolution, sediment particle motion, and the generation and development of dynamic hydraulic jump under the condition of sufficient sediment supply over a steep slope with varying angles. Because the sediment is not a continuous medium, the marker particle tracking approach was proposed to represent a piece of sediment with a marked sediment particle. The twophase SPH model realizes the interaction between the sediment and fluid by moving the bed boundary particles up and down, so it can reasonably treat the fluid-sediment interfaces with high CPU efficiency. The critical triggering condition of sediment motion, the propagation of the hydraulic jump and the initial siltation position were all systematically studied. The experimental and numerical results revealed the extra disastrous sediment effect in a mountainous flood. The findings will be useful references to the disaster prevention and mitigation in mountainous rivers.展开更多
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u...Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.展开更多
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a...The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi...With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.展开更多
The breakdown of soil aggregates under rainfall and their abrasion in overland flow are important processes in water erosion due to the production of more fine and transportable particles and,the subsequent significan...The breakdown of soil aggregates under rainfall and their abrasion in overland flow are important processes in water erosion due to the production of more fine and transportable particles and,the subsequent significant effect on the erosion intensity.Currently,little is known about the effects of sediment load on the soil aggregate abrasion and the relationship of this abrasion with some related hydraulic parameters.Here,the potential effects of sediment load on soil aggregate abrasion and hydraulic parameters in overland flow were investigated through a series of experiments in a 3.8-m-long hydraulic flume at the slope gradients of 8.7 and 26.8%,unit flow discharges from 2×10^-3 to 6×10^-3 m^2 s^-1,and the sediment concentration from 0 to 110 kg m-3.All the aggregates from Ultisols developed Quaternary red clay,Central China.The results indicated that discharge had the most significant(P<0.01)effect on the aggregates abrasion with the contributions of 58.76 and 60.34%,followed by sediment feed rate,with contributions of 39.66 and 34.12%at the slope gradients of 8.7 and 26.8%,respectively.The abrasion degree of aggregates was found to increase as a power function of the sediment concentration.Meanwhile,the flow depth,friction factor,and shear stress increased as a power function along with the increase of sediment concentration at different slope gradients and discharges.Reynolds number was obviously affected by sediment concentration and it decreased as sediment concentration increased.The ratio of the residual weight to the initial weight of soil aggregates(Wr/Wi)was found to increase as the linear function with an increasing flow depth(P=0.008)or Reynolds number(P=0.002)in the sediment-laden flow.The Wr/Wi values followed a power function decrease with increasing friction factor or shear stress in the sediment-laden flow,indicating that friction factor is the best hydraulic parameter for prediction of soil aggregate abrasion under different sediment load conditions.The information regarding the soil aggregate abrasion under various sediment load conditions can facilitate soil process-based erosion modeling.展开更多
Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate parti...Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.展开更多
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum p...Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum pergracile,a commonly used tropical bamboo species,exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019,but the underlying mechanisms remain unclear.This study investigated the leaf and stem hydraulic traits related to drought responses,including leaf-stem embolism resistance(P50leaf;P50stem) estimated using optical and X-ray microtomography methods,leaf pressure-volume and water-releasing curves.Additionally,we investigated the seasonal water potentials,native embolism level(PLC) and xylem water source using stable isotope.We found that C.pergracile exhibited strong resistance to embolism,showing low P50leaf,P50stem,and turgor loss point,despite its rapid leaf water loss.Interestingly,its leaves displayed greater resistance to embolism than its stem,suggesting a lack of effective hydraulic vulnerability segmentation(HVS) to protect the stem from excessive xylem tension.During the dry season,approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer.Consequently,significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87±2.33% in the wet season to 12.87±4.09%in the dry season were observed.In summary,this study demonstrated that the rapid leaf water loss,high reliance on surface water,and a lack of effective HVS in C.pergracile accelerated water depletion and increased xylem embolism even in the typical dry season,which may explain its high mortality rate during extreme drought events in 2019.展开更多
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati...The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.展开更多
To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The in...To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software.The ensuing results are compared with the outcomes of experimental tests.It is shown that thefluctuation range of the pressure coefficient increases with time,but the corresponding range for the transient hydraulic efficiency decreases gradually when theflow velocity transits to larger values.During the transition to smallflow velocity,thefluctuation range of the pressure coefficient gradually decreases as time passes,but the correspondingfluctuation range of its transient hydraulic efficiency gradually becomes larger.Thefluctuation range in the Z9 case is small during the transition.The main frequency of transient hydraulic efficiency pulsation is equal to the blade frequency.At the main frequency,Z7 has the largest amplitude of the hydraulic efficiency pulsation,Z10 has the smallest amplitude,and the difference between Z7 and Z9 is limited.As the number of blades grows,the pressure pulsation during the transition process gradually decreases,but the pressure pulsation of Z10 at the volute tongue is larger.In the steady state,Z9 has the highest efficiency and in the transient stage,the pressure coefficientfluctuation range is small.Accordingly,for the hydraulic turbine Z9,the performance is optimal.展开更多
The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group...The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group (RNG) k-ε turbulence model. Thirty-six monitoring points are set up on different stream surfaces to collect information on the impact erosion under different flow conditions, where the Initial Sediment Volume Fraction (ISVF) is set to 0.05, 0.075, 0.1, 0.125, and 0.15;particle diameter is set to 0.05 mm, 0.15 mm, 0.25 mm, 0.35 mm, and 0.45 mm respectively. The distribution of particle velocity and Local Solid-Phase Volume Fraction (LSVF) along different stream surfaces are calculated, based on which the trend of erosion is qualitatively evaluated. ISVF and particle diameter play different roles on the impact erosion index parameter () on the different wetted walls. Relative wear rate of numerical estimation agrees well with the practical one under the same working condition. Numerical analysis demonstrates that guide vane with a negative curvature end surface (concave surface) can decrease erosion damage effectively, which may provide a reference for optimal design and maintenance of hydraulic turbine.展开更多
Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments we...Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments were conducted on hollow double-wing crack specimens of the Longmaxi shale under conditions simulating the ground surface(confining pressure σ_(cp)=0, room temperature(Tr)) and at depths of 1600 m(σ_(cp)=40 MPa, Ti=70 ℃) and 3300 m(σ_(cp)=80 MPa, high temperature Ti=110 ℃) in the study area.High in situ stress was found to significantly increase fracture toughness through constrained microcracking and particle frictional bridging mechanisms. Increasing the temperature enhances rather than weakens the fracture resistance because it increases the grain debonding length, which dissipates more plastic energy and enlarges grains to close microdefects and generate compressive stress to inhibit microcracking. Interestingly, the fracture toughness anisotropy in the shale was found to be nearly constant across burial depths, despite reported variations with increasing confining pressure. Heated water was not found to be as important as the in situ environment in influencing shale fracture. These findings emphasize the need to test the fracture toughness of deep shales under coupled in situ stress and temperature conditions rather than focusing on either in situ stress or temperature alone.展开更多
In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is...In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.展开更多
High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However,...High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault;the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 <sup>l4</sup>C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 <sup>l4</sup>C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41825018)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090402)the National Natural Science Foundation of China(Grant No.42141009).
文摘Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.
基金supported by the Major Science And Technology Program of Inner Mongolia(Grant No.2021ZD0007)National Natural Science Foundation of China(Grant Nos.52209134 and 52322810)+1 种基金Natural Science Foundation of Hubei Province for Distinguished Young Scholars(No.2023AFA080)Youth Science Foundation of Jiangsu Province of China(Grant No.BK20220230).
文摘The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.
基金supported by the National Key Research and Development Program of China(No.2016YFC0402302)the National Natural Science Foundation of China(No.51609161)the Open Funding SKHL1710 and SKHL1712 from the State Key Laboratory of Hydraulics and Mountain River Engineering in Sichuan University,China
文摘Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs downstream over a gentle slope, the siltation of the riverbed is induced and the sediment particles can move upstream rapidly in the form of a retrograde sand wave, resulting in a higher water level along the river. To further study the complex mechanisms of this problem, a sediment mass model in the framework of the Smoothed Particle Hydrodynamics(SPH) method was presented to simulate the riverbed evolution, sediment particle motion, and the generation and development of dynamic hydraulic jump under the condition of sufficient sediment supply over a steep slope with varying angles. Because the sediment is not a continuous medium, the marker particle tracking approach was proposed to represent a piece of sediment with a marked sediment particle. The twophase SPH model realizes the interaction between the sediment and fluid by moving the bed boundary particles up and down, so it can reasonably treat the fluid-sediment interfaces with high CPU efficiency. The critical triggering condition of sediment motion, the propagation of the hydraulic jump and the initial siltation position were all systematically studied. The experimental and numerical results revealed the extra disastrous sediment effect in a mountainous flood. The findings will be useful references to the disaster prevention and mitigation in mountainous rivers.
基金Dao-Bing Wang was supported by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.52274002)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(No.2021DQ02-0201)Fu-Jian Zhou was supported by the National Natural Science Foundation of China(No.52174045).
文摘Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
基金Funding support from Heilongjiang"Open Competition"project(Grant No.DQYT2022-JS-758)is greatly acknowledgedFinancial support from the National Natural Science Foundation of China(Grant Nos.52304025 and 52174025)is acknowledged+1 种基金supports from Northeast Petroleum University and Guangdong Basic and Applied Basic Research Foundationsupport from the Heilongjiang Touyan Innovation Team Program.
文摘The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金supported by the National Natural Science Foundation of China(Nos.42077243,52209148,and 52079062).
文摘With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.
基金financially supported by the National Natural Science Foundation of China(41771304)the National Key Research and Development Program of China(2017YFC0505404)。
文摘The breakdown of soil aggregates under rainfall and their abrasion in overland flow are important processes in water erosion due to the production of more fine and transportable particles and,the subsequent significant effect on the erosion intensity.Currently,little is known about the effects of sediment load on the soil aggregate abrasion and the relationship of this abrasion with some related hydraulic parameters.Here,the potential effects of sediment load on soil aggregate abrasion and hydraulic parameters in overland flow were investigated through a series of experiments in a 3.8-m-long hydraulic flume at the slope gradients of 8.7 and 26.8%,unit flow discharges from 2×10^-3 to 6×10^-3 m^2 s^-1,and the sediment concentration from 0 to 110 kg m-3.All the aggregates from Ultisols developed Quaternary red clay,Central China.The results indicated that discharge had the most significant(P<0.01)effect on the aggregates abrasion with the contributions of 58.76 and 60.34%,followed by sediment feed rate,with contributions of 39.66 and 34.12%at the slope gradients of 8.7 and 26.8%,respectively.The abrasion degree of aggregates was found to increase as a power function of the sediment concentration.Meanwhile,the flow depth,friction factor,and shear stress increased as a power function along with the increase of sediment concentration at different slope gradients and discharges.Reynolds number was obviously affected by sediment concentration and it decreased as sediment concentration increased.The ratio of the residual weight to the initial weight of soil aggregates(Wr/Wi)was found to increase as the linear function with an increasing flow depth(P=0.008)or Reynolds number(P=0.002)in the sediment-laden flow.The Wr/Wi values followed a power function decrease with increasing friction factor or shear stress in the sediment-laden flow,indicating that friction factor is the best hydraulic parameter for prediction of soil aggregate abrasion under different sediment load conditions.The information regarding the soil aggregate abrasion under various sediment load conditions can facilitate soil process-based erosion modeling.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.42377156,42077251 and 42202305).
文摘Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金supported by the National Natural Science Foundation of China(Nos:32071735,32371576,32350410420,41861144016,and 31570406)CAS‘Light of West China’Program+2 种基金The 14th Five-Year Plan of the Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences(E3ZKFF1K,E3ZKFF2B)Yunnan Provincial Science and Technology Department(2018HB068)Yunnan Revitalization Talents Support Plan(YNWR-QNBJ-2019177).
文摘Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum pergracile,a commonly used tropical bamboo species,exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019,but the underlying mechanisms remain unclear.This study investigated the leaf and stem hydraulic traits related to drought responses,including leaf-stem embolism resistance(P50leaf;P50stem) estimated using optical and X-ray microtomography methods,leaf pressure-volume and water-releasing curves.Additionally,we investigated the seasonal water potentials,native embolism level(PLC) and xylem water source using stable isotope.We found that C.pergracile exhibited strong resistance to embolism,showing low P50leaf,P50stem,and turgor loss point,despite its rapid leaf water loss.Interestingly,its leaves displayed greater resistance to embolism than its stem,suggesting a lack of effective hydraulic vulnerability segmentation(HVS) to protect the stem from excessive xylem tension.During the dry season,approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer.Consequently,significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87±2.33% in the wet season to 12.87±4.09%in the dry season were observed.In summary,this study demonstrated that the rapid leaf water loss,high reliance on surface water,and a lack of effective HVS in C.pergracile accelerated water depletion and increased xylem embolism even in the typical dry season,which may explain its high mortality rate during extreme drought events in 2019.
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金supported by the National Natural Science Foundation of China(Grant No.42174118)a research grant(Grant No.ZDJ 2020-7)from the National Institute of Natural Hazards,Ministry of Emergency Management of China.
文摘The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.
基金The authors would like to thank the support of the Gansu Provincial Department of Education College Teachers’Innovation Fund Project(2024A-021)Colleges and Universities Industrial Support Program Projects of Gansu Province(Grant No.2020C-20)Key Laboratory of Fluid and Power Machinery,Ministry of Education,Xihua University(Grant No.szjj2019-016,LTDL2020-007).
文摘To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software.The ensuing results are compared with the outcomes of experimental tests.It is shown that thefluctuation range of the pressure coefficient increases with time,but the corresponding range for the transient hydraulic efficiency decreases gradually when theflow velocity transits to larger values.During the transition to smallflow velocity,thefluctuation range of the pressure coefficient gradually decreases as time passes,but the correspondingfluctuation range of its transient hydraulic efficiency gradually becomes larger.Thefluctuation range in the Z9 case is small during the transition.The main frequency of transient hydraulic efficiency pulsation is equal to the blade frequency.At the main frequency,Z7 has the largest amplitude of the hydraulic efficiency pulsation,Z10 has the smallest amplitude,and the difference between Z7 and Z9 is limited.As the number of blades grows,the pressure pulsation during the transition process gradually decreases,but the pressure pulsation of Z10 at the volute tongue is larger.In the steady state,Z9 has the highest efficiency and in the transient stage,the pressure coefficientfluctuation range is small.Accordingly,for the hydraulic turbine Z9,the performance is optimal.
文摘The effect of clearance flow on the erosion characteristics of a circular cylinder with a backward facing step in sediment-laden water flow is analyzed numerically with the mixture model and the re-normalization group (RNG) k-ε turbulence model. Thirty-six monitoring points are set up on different stream surfaces to collect information on the impact erosion under different flow conditions, where the Initial Sediment Volume Fraction (ISVF) is set to 0.05, 0.075, 0.1, 0.125, and 0.15;particle diameter is set to 0.05 mm, 0.15 mm, 0.25 mm, 0.35 mm, and 0.45 mm respectively. The distribution of particle velocity and Local Solid-Phase Volume Fraction (LSVF) along different stream surfaces are calculated, based on which the trend of erosion is qualitatively evaluated. ISVF and particle diameter play different roles on the impact erosion index parameter () on the different wetted walls. Relative wear rate of numerical estimation agrees well with the practical one under the same working condition. Numerical analysis demonstrates that guide vane with a negative curvature end surface (concave surface) can decrease erosion damage effectively, which may provide a reference for optimal design and maintenance of hydraulic turbine.
基金supported by the National Natural Science Foundation of China(No.12172240).
文摘Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments were conducted on hollow double-wing crack specimens of the Longmaxi shale under conditions simulating the ground surface(confining pressure σ_(cp)=0, room temperature(Tr)) and at depths of 1600 m(σ_(cp)=40 MPa, Ti=70 ℃) and 3300 m(σ_(cp)=80 MPa, high temperature Ti=110 ℃) in the study area.High in situ stress was found to significantly increase fracture toughness through constrained microcracking and particle frictional bridging mechanisms. Increasing the temperature enhances rather than weakens the fracture resistance because it increases the grain debonding length, which dissipates more plastic energy and enlarges grains to close microdefects and generate compressive stress to inhibit microcracking. Interestingly, the fracture toughness anisotropy in the shale was found to be nearly constant across burial depths, despite reported variations with increasing confining pressure. Heated water was not found to be as important as the in situ environment in influencing shale fracture. These findings emphasize the need to test the fracture toughness of deep shales under coupled in situ stress and temperature conditions rather than focusing on either in situ stress or temperature alone.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFC1804301)the National Science Fourdation of China(Grant No.42272279,41902244)partial support from a Discovery Grant awarded by the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.
文摘High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault;the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 <sup>l4</sup>C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 <sup>l4</sup>C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy.