期刊文献+
共找到1,081篇文章
< 1 2 55 >
每页显示 20 50 100
Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All‑Solid‑State Lithium Batteries
1
作者 Xueyan Zhang Shichao Cheng +4 位作者 Chuankai Fu Geping Yin Liguang Wang Yongmin Wu Hua Huo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期46-97,共52页
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ... To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs. 展开更多
关键词 Composite solid electrolytes inorganic filler Interfacial stability Li-ion conduction mechanism Characterization techniques
下载PDF
Pervaporation performance and characterization of hydrophilic ZSM-5 zeolite membranes for high inorganic acid and inorganic salts
2
作者 Huanxu Teng Ronghui You +7 位作者 Huanyi Li Siqi Shao Qi Zhou Ying Yang Ting Wu Meihua Zhu Xiangshu Chen Hidetoshi Kita 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期27-33,共7页
The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalin... The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1-6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%. 展开更多
关键词 Hydrophilic ZSM-5 zeolite membranes inorganic acid inorganic salt pervaporation DESALINATION
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
3
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 inorganic phase change material Carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries 被引量:2
4
作者 Honglan Huang Chao Liu +6 位作者 Ziya Liu Yunyan Wu Yifan Liu Jinbo Fan Gen Zhang Pan Xiong Junwu Zhu 《Advanced Powder Materials》 2024年第1期22-39,共18页
Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance o... Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked. 展开更多
关键词 Composite solid-state electrolytes Functional inorganic additives Lithium metal batteries High ionic conductivity Dendrite-free anode
下载PDF
Cross-layer all-interface defect passivation with pre-buried additive toward efficient all-inorganic perovskite solar cells
5
作者 Qiurui Wang Jingwei Zhu +7 位作者 Yuanyuan Zhao Yijie Chang Nini Hao Zhe Xin Qiang Zhang Cong Chen Hao Huang Qunwei Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期283-291,共9页
The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of... The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC. 展开更多
关键词 buried interfaces charge recombination DEFECT PASSIVATION inorganic perovskite solar cells strain relaxation
下载PDF
Effects of inorganic nutrients and environmental factors on the removal of n-propylbenzene and isopropylbenzene in seawater by cryptophytes Rhinomonas reticulata S6A
6
作者 Jiali CUI Shuhao DU +3 位作者 Yumei LI Haiping LI Ping ZHANG Fanping MENG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1200-1215,共16页
To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environm... To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater. 展开更多
关键词 propylbenzene(PBZ) Rhinomonas reticulata seawater inorganic nutrient environmental factor
下载PDF
Semitransparent organic photovoltaics enabled by transparent p-type inorganic semiconductor and near-infrared acceptor
7
作者 Xue Yan Jiayu Wang +17 位作者 Wei He Top Archie Dela Peña Can Zhu Hailin Yu Yingyue Hu Cenqi Yan Shengqiang Ren Xingyu Chen Zhe Wang Jiaying Wu Mingjie Li Jianlong Xia Lei Meng Shirong Lu Dewei Zhao Mikhail Artemyev Yongfang Li Pei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期351-358,共8页
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi... Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%. 展开更多
关键词 Copper(I)thiocyanate inorganic semiconductor SEMITRANSPARENT Organic photovoltaics Charge dissociation
下载PDF
Research,application and development of inorganic binder for casting process
8
作者 Xiao-long Gong Sheng-li Hu Zi-tian Fan 《China Foundry》 SCIE EI CAS CSCD 2024年第5期461-475,共15页
Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.How... Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.However,compared to organic binders(such as resin binders),inorganic binders exhibit lower bonding strength and are more sensitive to environmental humidity.This sensitivity poses challenges,particularly in the reclamation of used sand,thus limiting their broader application.In this paper,the research and application status of inorganic binders(mainly silicate inorganic binders)and their curing methods are summarized.In addition,the research and application of phosphate inorganic binders and 3D printing inorganic binders that are being developed are introduced.Meanwhile,a detailed comparative analysis is conducted on the challenging issue of“reclamation for used sand”in the application of inorganic binders.Finally,the development direction of inorganic binders is clarified. 展开更多
关键词 inorganic binder silicate system phosphate system 3D printing used sand reclamation development trend
下载PDF
Reinforced SnO_(2) tensile-strength and“buffer-spring”interfaces for efficient inorganic perovskite solar cells
9
作者 Yuanyuan Zhao Lei Gao +6 位作者 Qiurui Wang Qiang Zhang Xiya Yang Jingwei Zhu Hao Huang Jialong Duan Qunwei Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期282-291,共10页
Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce... Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days. 展开更多
关键词 charge recombination defect passivation inorganic perovskite solar cells interfacial modification strain relaxation
下载PDF
Removal of ammonia nitrogen from inorganic wastewater by AgBr/C_(3)N_(5)heterojunction under visible light irradiation
10
作者 Bingsheng Zhu 《日用化学工业(中英文)》 CAS 北大核心 2024年第12期1473-1480,共8页
AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and ph... AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and photoelectron-hole separation of the composite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-vis DRS)and photoluminescence spectroscopy(PL).The construction of AgBr and C_(3)N_(5)heterojunction could broaden the spectral response range,realize the efficient separation of photoelectrons and holes,and thus improve the photocatalytic performance.The photocatalytic performance of the composite material was studied by simulating inorganic ammonia nitrogen wastewater with NH_(4)Cl solution.The dosage of the composite material was 0.10 g,the initial mass concentration of NH_(4)Cl solution was 100 mg/L,and the initial pH was 10.0.The removal rate of ammonia nitrogen by the composite material reached 90.27%after 60 min of simulated visible light irradiation.After 5 cycles,the removal rate of ammonia nitrogen only declined by 0.12%.The composite material showed good photocatalytic performance and stability.The Z-scheme mechanism effectively retained the reduction and oxidation activities of photoelectrons and holes,which could change O_(2)and H2O to active groups such as superoxide radicals(·O_(2)-)and hydroxyl radicals(·OH),respectively,achieving efficient removal of inorganic ammonia nitrogen. 展开更多
关键词 nitrogen-rich carbon nitride composite material visible light inorganic ammonia nitrogen
下载PDF
Exploration of Ideological and Political Materials for the Course of Inorganic and Analytical Chemistry for Environmental and Ecological Engineering Major
11
作者 Lihua XIE Siqian JIAO +4 位作者 Pengqiang YAO Weishuang TONG Yanjiao LI Zhe WANG Haina SONG 《Asian Agricultural Research》 2024年第4期41-47,共7页
Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing ... Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course. 展开更多
关键词 ENVIRONMENTAL and ECOLOGICAL engineering Ideological and POLITICAL MATERIALS TALENT training inorganic and analytical chemistry
下载PDF
Research Progress in Mechanochemistry of Inorganic Materials
12
作者 Tongjun Wang Xiuzhen Liu 《Expert Review of Chinese Chemical》 2024年第1期36-38,共3页
With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it i... With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it is necessary to study and explore mechanochemistry.This article mainly discusses the application of mechanochemistry in powder and some silicate materials,as well as in special ceramics,and provides a brief introduction to provide reference for relevant researchers. 展开更多
关键词 MECHANOCHEMISTRY inorganic materials mechanical activity ultra fine crushing
下载PDF
Preparation of inorganic molten salt composite phase change materials and study on their electrothermal conversion properties
13
作者 Jiandong Zuo Hongjie Luo +3 位作者 Ziye Ling Zhengguo Zhang Xiaoming Fang Weiwei Zhang 《Industrial Chemistry & Materials》 2024年第4期571-586,共16页
Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in ... Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs. 展开更多
关键词 Thermal energy storage materials inorganic molten salts Composite phase transition materials Electrothermal conversion Physical property regulation
下载PDF
A Novel Approach to Synthesizing Porous ZnO Films: Inorganic Chelating Sol-Gel Method 被引量:1
14
作者 杨立荣 靳正国 +1 位作者 步邵静 程志捷 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第3期241-246,共6页
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface... Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV. 展开更多
关键词 porous ZnO film inorganic chelating sol-gel method pore size distribution PROPERTIES
下载PDF
Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China 被引量:12
15
作者 FANG Yun-ting ZHU Wei-xing +2 位作者 MO Jiang-ming ZHOU Guo-yi GUNDERSEN Per 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期752-759,共8页
Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to ... Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region. 展开更多
关键词 N deposition N saturation extractable inorganic N soil solution inorganic N subtropical China
下载PDF
Inorganic Elements in Kernel of Amygdalus communis L. Measured Using ICP-OES Method 被引量:1
16
作者 丁玲 彭镰心 刘圆 《Agricultural Science & Technology》 CAS 2012年第6期1254-1259,共6页
[Objective] The aim was to study on distribution of inorganic elements in kernel of Amygdalus communis L., providing reference for quality evaluation of A. communis L. species. [Method] Totally 26 species of inorganic... [Objective] The aim was to study on distribution of inorganic elements in kernel of Amygdalus communis L., providing reference for quality evaluation of A. communis L. species. [Method] Totally 26 species of inorganic elements in kernel, including Al, B, Be, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Si, Sn, Sr, Ti, Zn, Cd, As, Se, V, Hg, Cr and K were measured with inductively coupled plasma emission spectrum (ICP-OES) and principal components analysis (PCA). [Result] A. communis L. of different species and in different factories showed a similar curve in content of inorganic elements; absolute contents of the elements differed significantly. In addition, the accumulated variance contribution of five principle factors achieved as high as 84.371% and the variance contribution made by the first three factors accounted for 67.546%, proving that Fe, Ti, Pb, Na, Se, Cu, Mo, K, Zn, Ni, Ca and Sr were characteristic elements. [Conclusion] The method, which is brief, rapid and accurate, can be used for determination of inorganic elements in kernel of A. communis L., providing theoretical references for further development and utilization of A. communis L. 展开更多
关键词 ICP-OES A. communis L. inorganic element Principle component analysis
下载PDF
Inorganic Carbon Utilization in Some Marine Phytoplankton Species 被引量:2
17
作者 缪晓玲 吴庆余 《Acta Botanica Sinica》 CSCD 2002年第4期395-399,共5页
In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic an... In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic anhydrase (CA) was assayed in different pH, CO 2 and DIC concentrations. Extracellular CA in Amphidinium carterae and Prorocentrum minimum was detected under carbon-replete conditions, while in Melosira sp., Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira rotula, Emiliania huxleyi and Pleurochrysis carterae, CA activity was assayed under conditions of carbon limitation. No CA activity was found even under carbon-limited conditions in Chaetoceros compressus, Glenodinium foliaceum, Coccolithus pelagicus, Gephrocapsa oceanica and Heterosigma akashiwo. In species without extracellular CA activity, the direct HCO - 3 uptake was investigated using a pH drift technique and the anion exchange inhibitor 4′4′-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) in a closed system. The result showed that direct HCO - 3 transport might occur by an anion exchange mechanism in species Coc. pelagicus and G. oceanica. Of the 13 species investigated, only H. akashiwo did not have the potential for direct uptake or extracellular CA-catalyzed HCO - 3 utilization. 展开更多
关键词 dissolved inorganic carbon (DIC) extracellular carbonic anhydrase (CA) 4′4′-diisothiocyanatostilbene-2 2-disulfonic acid (DIDS) dextran-bound sulfonamide (DBS)
下载PDF
The Effects of Estuarine Processes on the Fluxes of Inorganic and Organic Carbon in the Yellow River Estuary 被引量:5
18
作者 GU Dianjun ZHANG LongJun JIANG Liqing 《Journal of Ocean University of China》 SCIE CAS 2009年第4期352-358,共7页
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary.... Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea. 展开更多
关键词 particulate organic carbon particulate inorganic carbon dissolved organic carbon dissolved inorganic carbon Yellow River estuary
下载PDF
Inorganic Elements in Tuber of Chinese Herbal Medicine Radix Pseudostellariae from Guizhou Province
19
作者 邵代兴 罗希榕 +5 位作者 刘红 林昌虎 林莉 周开芳 刘云 覃成 《Agricultural Science & Technology》 CAS 2017年第5期792-797,842,共7页
By analyzing the contents of inorganic elements in Radix Pseudostellariae from Guizhou Province, the aim was to assess the present quality of Radix Pseu- dostellariae, set limited standards of heavy metals, establish ... By analyzing the contents of inorganic elements in Radix Pseudostellariae from Guizhou Province, the aim was to assess the present quality of Radix Pseu- dostellariae, set limited standards of heavy metals, establish element fingerprints, and find out the characteristic elements. ICP-MS was used to measure the content of inorganic elements and map the element fingerprints. Additionally, WM/T2-2004 was applied to evaluate the quality of heavy metal elements, and the characteristic elements were determined by principal component analysis. The results showed that the contents of inorganic elements in Radix Pseudostellariae were between 0.057 and 959 mg/kg with the coefficients of variation ranging from 0.134 to 1.478, and the contents of Cd, As, Pb, and Hg were below the Standard of WM/T2-2004 in 90% of Radix Pseudostellariae. The standard limits of heavy metals in Radix Pseu- dostellariae were Cr≤6.5 mg/kg, Cu≤10 mg/kg, As≤2.0 mg /kg, Cd≤0.3 mg/kg, Hg≤0.15 mg/kg, and Pb≤4.0 mg/kg. The features of the inorganic eJements finger- prints could provide theoretical basis of identifying the quality of Radix Pseudostel- lariae and distinguishing Radix Pseudostellariae from other Chinese herbal medicines. The characteristic inorganic elements of Radix Pseudostellariae were found to be Cd, Cu, Co, Zn, Fe, Ca, Mg, and AI. Radix Pseudostellariae from Guizhou Province contained abundant inorganic elements, and the contents of heavy metals were below the evaluation criterion. The study provided a reference for the future development of the limiting values of heaw metals in Radix Pseudostellariae. 展开更多
关键词 GUIZHOU Radix Pseudostellariae inorganic element Principal componentanalysis Element fingerprint
下载PDF
Synergistic stabilization of CsPbI_(3) inorganic perovskite via 1D capping and secondary growth 被引量:1
20
作者 Jingya Mi Yuetian Chen +4 位作者 Xiaomin Liu Xingtao Wang Yanfeng Miao Yabing Qi Yixin Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期387-392,共6页
Cesium lead iodide(CsPbI_(3)) perovskite has gained great attention in the photovoltaic(PV) community because of its unique optoelectronic properties, good chemical stability and appropriate bandgap for sunlight harve... Cesium lead iodide(CsPbI_(3)) perovskite has gained great attention in the photovoltaic(PV) community because of its unique optoelectronic properties, good chemical stability and appropriate bandgap for sunlight harvesting applications. However, compared to solar cells fabricated from organic-inorganic hybrid perovskites, the commercialization of devices based on all-inorganic CsPbI_(3) perovskites still faces many challenges regarding PV performance and long-term stability. In this work, we discovered that tetrabutylammonium bromide(TBABr) post-treatment to CsPbI_(3) perovskite films could achieve synergistic stabilization with both TBA+cation intercalation and Br-doping. Such TBA^(+) cation intercalation leads to onedimensional capping with TBAPb I3 perovskite formed in situ, while the Br-induced crystal secondary growth helps effectively passivate the defects of CsPbI_(3) perovskite, thus enhancing the stability. In addition, the incorporation of TBABr can improve energy-level alignment and reduce interfacial charge recombination loss for better device performance. Finally, the highly stable TBABr-treated CsPbI_(3)-based perovskite solar cells show reproducible photovoltaic performance with a champion efficiency up to 19.04%, while retaining 90% of the initial efficiency after 500 h storage without encapsulation. 展开更多
关键词 CsPbI_(3)inorganic perovskite All-inorganic perovskite solar cell One-dimensional capping Synergistic stabilization
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部