为分析智能软开关(soft open point,SOP)连续调节能力对柔性配电网(flexible distribution network,FDN)风险的影响。首先,实现基于三点估计的FDN风险评估方法;采用三点估计法结合交直流交替迭代法和Gram-Charlier级数展开法进行FDN概...为分析智能软开关(soft open point,SOP)连续调节能力对柔性配电网(flexible distribution network,FDN)风险的影响。首先,实现基于三点估计的FDN风险评估方法;采用三点估计法结合交直流交替迭代法和Gram-Charlier级数展开法进行FDN概率潮流计算,获得节点电压与支路有功功率的概率密度函数,使用越限偏移量结合风险偏好型效用函数构建严重度函数,根据风险评估理论建立并计算风险评估指标。其次,在此基础上,提出一种计及SOP参数优化的FDN风险评估方法;以系统总风险最低为目标,建立计及SOP参数优化的FDN风险评估模型,采用粒子群优化算法结合基于三点估计的FDN风险评估方法对其进行求解,用得到的结果去配置SOP,并对此FDN进行风险评估。以3个IEEE 33节点网络通过三端口SOP互联形成的FDN为例,验证了所提风险评估方法的有效性,分析了SOP连续调节能力以及不同接入位置对FDN风险的影响。展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
BACKGROUND Esophageal variceal bleeding is a severe complication associated with liver cirrhosis and typically necessitates endoscopic hemostasis.The current standard treatment is endoscopic variceal ligation(EVL),and...BACKGROUND Esophageal variceal bleeding is a severe complication associated with liver cirrhosis and typically necessitates endoscopic hemostasis.The current standard treatment is endoscopic variceal ligation(EVL),and Western guidelines recom-mend antibiotic prophylaxis following hemostasis.However,given the impro-vements in prognosis for variceal bleeding due to advancements in the management of bleeding and treatments of liver cirrhosis and the global concerns regarding the emergence of multidrug-resistant bacteria,there is a need to reassess the use of routine antibiotic prophylaxis after hemostasis.AIM To evaluate the effectiveness of antibiotic prophylaxis in patients treated for EVL.METHODS We conducted a 13-year observational study using the Tokushukai medical database across 46 hospitals.Patients were divided into the prophylaxis group(received antibiotics on admission or the next day)and the non-prophylaxis group(did not receive antibiotics within one day of admission).The primary outcome was composed of 6-wk mortality,4-wk rebleeding,and 4-wk spontaneous bacterial peritonitis(SBP).The secondary outcomes were each individual result and in-hospital mortality.A logistic regression with inverse probability of treatment weighting was used.A subgroup analysis was conducted based on the Child-Pugh classification to determine its influence on the primary outcome measures,while sensitivity analyses for antibiotic type and duration were also performed.RESULTS Among 980 patients,790 were included(prophylaxis:232,non-prophylaxis:558).Most patients were males under the age of 65 years with a median Child-Pugh score of 8.The composite primary outcomes occurred in 11.2%of patients in the prophylaxis group and 9.5%in the non-prophylaxis group.No significant differences in outcomes were observed between the groups(adjusted odds ratio,1.11;95%confidence interval,0.61-1.99;P=0.74).Individual outcomes such as 6-wk mortality,4-wk rebleeding,4-wk onset of SBP,and in-hospital mortality were not significantly different between the groups.The primary outcome did not differ between the Child-Pugh subgroups.Similar results were observed in the sensitivity analyses.CONCLUSION No significant benefit to antibiotic prophylaxis for esophageal variceal bleeding treated with EVL was detected in this study.Global reassessment of routine antibiotic prophylaxis is imperative.展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta...Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta, and Student law, through the chi-square law and the normal law are all distributions resulting from applications of Euleur functions.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this pa...The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.展开更多
文摘为分析智能软开关(soft open point,SOP)连续调节能力对柔性配电网(flexible distribution network,FDN)风险的影响。首先,实现基于三点估计的FDN风险评估方法;采用三点估计法结合交直流交替迭代法和Gram-Charlier级数展开法进行FDN概率潮流计算,获得节点电压与支路有功功率的概率密度函数,使用越限偏移量结合风险偏好型效用函数构建严重度函数,根据风险评估理论建立并计算风险评估指标。其次,在此基础上,提出一种计及SOP参数优化的FDN风险评估方法;以系统总风险最低为目标,建立计及SOP参数优化的FDN风险评估模型,采用粒子群优化算法结合基于三点估计的FDN风险评估方法对其进行求解,用得到的结果去配置SOP,并对此FDN进行风险评估。以3个IEEE 33节点网络通过三端口SOP互联形成的FDN为例,验证了所提风险评估方法的有效性,分析了SOP连续调节能力以及不同接入位置对FDN风险的影响。
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
基金approved by the Institutional Review Board of the Future Medical Research Centre Ethical Committee(Approval No.TGE02100-02).
文摘BACKGROUND Esophageal variceal bleeding is a severe complication associated with liver cirrhosis and typically necessitates endoscopic hemostasis.The current standard treatment is endoscopic variceal ligation(EVL),and Western guidelines recom-mend antibiotic prophylaxis following hemostasis.However,given the impro-vements in prognosis for variceal bleeding due to advancements in the management of bleeding and treatments of liver cirrhosis and the global concerns regarding the emergence of multidrug-resistant bacteria,there is a need to reassess the use of routine antibiotic prophylaxis after hemostasis.AIM To evaluate the effectiveness of antibiotic prophylaxis in patients treated for EVL.METHODS We conducted a 13-year observational study using the Tokushukai medical database across 46 hospitals.Patients were divided into the prophylaxis group(received antibiotics on admission or the next day)and the non-prophylaxis group(did not receive antibiotics within one day of admission).The primary outcome was composed of 6-wk mortality,4-wk rebleeding,and 4-wk spontaneous bacterial peritonitis(SBP).The secondary outcomes were each individual result and in-hospital mortality.A logistic regression with inverse probability of treatment weighting was used.A subgroup analysis was conducted based on the Child-Pugh classification to determine its influence on the primary outcome measures,while sensitivity analyses for antibiotic type and duration were also performed.RESULTS Among 980 patients,790 were included(prophylaxis:232,non-prophylaxis:558).Most patients were males under the age of 65 years with a median Child-Pugh score of 8.The composite primary outcomes occurred in 11.2%of patients in the prophylaxis group and 9.5%in the non-prophylaxis group.No significant differences in outcomes were observed between the groups(adjusted odds ratio,1.11;95%confidence interval,0.61-1.99;P=0.74).Individual outcomes such as 6-wk mortality,4-wk rebleeding,4-wk onset of SBP,and in-hospital mortality were not significantly different between the groups.The primary outcome did not differ between the Child-Pugh subgroups.Similar results were observed in the sensitivity analyses.CONCLUSION No significant benefit to antibiotic prophylaxis for esophageal variceal bleeding treated with EVL was detected in this study.Global reassessment of routine antibiotic prophylaxis is imperative.
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
文摘Several densities or probability laws of continuous random variables derive from the Euler Gamma function. These laws form the basis of sampling theory, namely hypothesis testing and estimation. Namely the gamma, beta, and Student law, through the chi-square law and the normal law are all distributions resulting from applications of Euleur functions.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
文摘The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.