期刊文献+
共找到39,602篇文章
< 1 2 250 >
每页显示 20 50 100
Energy and Exergy Analysis of Pyramid-Type Solar Still Coupled with Magnetic and Electrical Effects by UsingMatlab Simulation
1
作者 Karrar A.Hammoodi Hayder A.Dhahad +1 位作者 Wissam H.Alawee Z.M.Omara 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期217-262,共46页
In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of... In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2). 展开更多
关键词 Pyramid solar still solar desalination energy and exergy analysis innovative solar still technique theoretical study Matlab
下载PDF
The Dependence between Solar Flare Emergence and the Average Background Solar X-Ray Flux Emission
2
作者 Yael Peleg Rami Babayew Itzhak Orion 《International Journal of Astronomy and Astrophysics》 2024年第3期149-161,共13页
Solar flares, sudden bursts of intense electromagnetic radiation from the Sun, can significantly disrupt technological infrastructure, including communication and navigation satellites. To mitigate these risks, accura... Solar flares, sudden bursts of intense electromagnetic radiation from the Sun, can significantly disrupt technological infrastructure, including communication and navigation satellites. To mitigate these risks, accurate forecasting of solar activity is crucial. This study investigates the potential of the Sun’s background X-ray flux as a tool for predicting solar flares. We analyzed data collected by solar telescopes and satellites between the years 2013 and 2023, focusing on the duration, frequency, and intensity of solar flares. We compared these characteristics with the background X-ray flux at the time of each flare event. Our analysis employed statistical methods to identify potential correlations between these solar phenomena. The key finding of this study reveals a significant positive correlation between solar flare activity and the Sun’s background X-ray flux. This suggests that these phenomena are interconnected within the framework of overall solar activity. We observed a clear trend: periods with increased occurrences of solar flares coincided with elevated background flux levels. This finding has the potential to improve solar activity forecasting. By monitoring background flux variations, we may be able to develop a more effective early warning system for potentially disruptive solar flares. This research contributes to a deeper understanding of the complex relationship between solar flares and the Sun’s overall radiative output. These findings indicate that lower-resolution X-ray sensors can be a valuable tool for identifying periods of increased solar activity by allowing us to monitor background flux variations. A more affordable approach to solar activity monitoring is advised. 展开更多
关键词 Space Weather solar Flare solar Activity SUNSPOTS solar Cycle
下载PDF
Application and prospect of the fluid cooling system of solar arrays for probing the Sun 被引量:1
3
作者 Kangli Bao Xiaofei Zhu +5 位作者 Jianchao Feng Liu Liu Xiaofeng Zhang Zhiming Cai Jun Lin Yonghe Zhang 《Astronomical Techniques and Instruments》 CSCD 2024年第1期62-70,共9页
The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,... The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation. 展开更多
关键词 In situ detection of solar eruption solar array cooling system Pumped fluid loop High heat flux dissipation
下载PDF
Solar fuel production through concentrating light irradiation
4
作者 Yiwei Fu Yi Wang +2 位作者 Jie Huang Kejian Lu Maochang Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1550-1580,共31页
The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar f... The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production. 展开更多
关键词 Concentrated solar energy solar fuel Photo-electrochemistry THERMOCHEMISTRY Photo-thermal co-catalysis
下载PDF
A Tutorial Review of the Solar Power Curve: Regressions, Model Chains, and Their Hybridization and Probabilistic Extensions
5
作者 Dazhi YANG Xiang’ao XIA Martin János MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1023-1067,共45页
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent... Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review. 展开更多
关键词 review energy meteorology solar power curve model chain solar power prediction
下载PDF
Amphipathic Janus Nanofibers Aerogel for Efficient Solar Steam Generation
6
作者 Rui Wang Jinshuo Deng +6 位作者 Ping Wu Qianli Ma Xiangting Dong Wensheng Yu Guixia Liu Jinxian Wang Lei Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期422-432,共11页
Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alo... Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alone are insufficient in achieving necessary characteristics for constructing highquality solar steam generators with good comprehensive properties.Herein,novel hydrophile/hydrophobe amphipathic Janus nanofibers aerogel is designed and used as a host material for preparing solar steam generators.The product consists of an internal cubic aerogel and an external layer of photothermal materials.The internal aerogel is composed of electrospun amphipathic Janus nanofibers.Owing to the unique composition and structure,the prepared solar steam generator integrates the features of high water evaporation rate(2.944 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation),selffloating,salt-resisting,and fast performance recovery after flipping.Moreover,the product also exhibits excellent properties on desalination and removal of organic pollutants.Compared with traditional hydrophilic aerogel host material,the amphipathic Janus nanofibers aerogel brings much higher water evaporation rate and salt resistance. 展开更多
关键词 AEROGELS electrospinning photothermal materials solar desalination solar steam generation
下载PDF
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
7
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 Inverted perovskite solar cells Perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
8
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells Tandem solar cells Buffer layer Stability
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
9
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
10
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 Perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Solar image reconstruction method under atmospheric turbulence at Fuxian Lake Solar Observatory
11
作者 Sizhong Zou Zhenyu Jin +2 位作者 Kaifan Ji Jun Xu Lei Yang 《Astronomical Techniques and Instruments》 CSCD 2024年第2期128-139,共12页
Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviat... Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence. 展开更多
关键词 Astronomical seeing solar telescopes solar observatories Astronomy image processing Phase error DECONVOLUTION
下载PDF
Bias-Free Solar-to-Hydrogen Conversion in a BiVO_(4)/PM6:Y6 Compact Tandem with Optically Balanced Light Absorption
12
作者 Catarina G.Ferreira Constanza Sansierra +3 位作者 Francisco Bernal-Texca Mingyu Zhang Carles Ros Jordi Martorell 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期231-238,共8页
The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/s... The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/solar cell tandem structure has been theoretically demonstrated as a viable path to achieve an efficient direct transformation of sunlight into chemical energy.However,compact designs exhibiting the indispensable optimally balanced light absorption have not been demonstrated.In the current work,we design and implement a compact tandem providing the complementary absorption of a highly transparent BiVO_(4)photoanode and a PM6:Y6 solar cell.Such bandgap combination approaches the optimal to reach the solar-to-hydrogen(STH)conversion upper limit for tandem photoelectrochemical cells(PECs).We demonstrate that,by using a photonic multilayer structure to adequately balance sunlight absorption among both tandem materials,a 25%increase in the bias-free STH conversion can be achieved,setting a clear path to take compact tandem PECs to the theoretical limit performance. 展开更多
关键词 bismuth vanadate compact tandem organic solar cells photonic multilayers solar-to-hydrogen conversion
下载PDF
Experimental Study on Improving Performance and Productivity of Pyramid Solar StillUsing Rotation Technique
13
作者 Ali Abdullah Abbas Baiee Sasan Asiaei Sayed Mostafa Hosseinalipour 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期955-976,共22页
Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental ... Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still(PSS),which serves to enhance the evaporation and condensation processes.The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes:water distillation,evaporation,condensation,heat transfer,and energy waste reduction,shadow effects,and low water temperature in saline environments.Ultimately,the study aims to enhance the production of distilled water.An economic evaluation was undertaken in order to ascertain the extent of cost reduction.Experiments measuring freshwater productivity and thermal performance were conducted over a three-month period at the University of Science and Technology in Tehran.The entire pyramid structure was rotated using a direct current motor driven by a photovoltaic cell.The research methodology entailed the operation of a PSS with varying rotational speeds(0.125,0.25,1,and 1.5 rpm)and without rotation,from 9 am to 4 pm.The findings suggested that the productivity of the distillation apparatus in terms of distilled water increased as the rotation speed rose,with the most pronounced increase occurring at 1 rpm in comparison to the other conditions.The presence of turbulence in the water enhanced the heat transfer occurring between the absorber plate and thewater.At 2:00 p.m.on an experimental day,this effect was observed when the absorber plate temperature reached 79.1°C at 1.5 rpm.In contrast,its temperature decreased to 78°C when not in a state of rotation,as the intensity of solar radiation was higher in the non-rotation state.At 1 rpm,the solar pyramid distiller achieved a 30.2%increase in output compared to its non-rotating state.At 1 rpm,the distiller achieved a 20.6%increase in output compared to 0.25 revolutions per minute.In addition to the control condition,the thermal efficiency of the solar still varied as follows:at 1,1.5,0.25,and 0.125 rpm,it was 46.2%;at 44.2%,37.8%;at 35.3%;and at 36.6%,respectively.Furthermore,distilled water generated by a pyramid solar still with rotation(PSSR)is priced at$0.03 per liter,whereas it costs$0.0317 per liter when produced by a pyramid solar still without rotation(PSS without R). 展开更多
关键词 Pyramidal solar still ROTATION solar radiation gain evaporation CONDENSATION PRODUCTIVITY thermal efficiency
下载PDF
Experimental Investigation of a Phase-ChangeMaterial’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds
14
作者 Karim Choubani Ons Ghriss +2 位作者 Nashmi H.Alrasheedi Sirin Dhaoui Abdallah Bouabidi 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期341-358,共18页
Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us... Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom. 展开更多
关键词 Smart salt-gradient solar pond phase-change material experimental investigation stability of solar ponds
下载PDF
Assessing Factors Influencing Solar Energy Adoption among Small and Medium Enterprises in Mzuzu City, Malawi
15
作者 Mkhalipie Avenea Beatrice Ke Jiang 《Energy and Power Engineering》 2024年第7期257-284,共28页
One of the many renewable energy sources that offer advantages is solar energy, which also lowers energy prices and promotes environmental sustainability and energy security. Despite these advantages, various barriers... One of the many renewable energy sources that offer advantages is solar energy, which also lowers energy prices and promotes environmental sustainability and energy security. Despite these advantages, various barriers, such as installation costs, have prevented small and medium-sized enterprises from investigating this invention. Malawi has a significant energy shortfall such that most businesses have been hindered from their profit maximization goals. The “Photovoltaic systems” (PV) that transform sunlight into electricity are the subject of this study. This type of solar energy system is situated on the building’s roof and generally produces electricity for businesses and even homes. Solar energy offers a great impact to small and medium enterprises in Mzuzu city with a cost-effective and dependable alternative to energy that has the potential to change the game. Therefore the aim of the study was to identify factors that encourage the adoption of solar energy among small medium enterprises in the city of Mzuzu city. And to identify some of barriers faced when adopting solar energy among small and medium enterprises in the city of Mzuzu. The research approach employed in the study was a survey. A survey is a type of research methodology in which primary data is gathered from a sample using a questionnaire. When information is to be gathered from a wider sample, a survey is employed. A bigger sample size was needed in this study in order to facilitate hypothesis testing. It is advised to apply a logical approach while using the survey. The survey utilized a five-point Likert scale. The study used convenience sampling to select study participants. The sample size in this study was determined using Cochran’s sample size formula. Statistical Package for Social Sciences (SPSS) and Microsoft Excel were used for statistical analysis. About 97.2% of the participants were aware of solar as a source of energy compared to 2.8 % who were unaware. The majority of participants use solar energy for lighting only, seconded by those who use electricity. The least number of participants use solar energy for cooling only. The majority of participants 21.5% indicated partnership and collaboration as the most motivating factor for the adoption of solar energy. This was followed by technical expertise 19.1 % the least number of participants 10.8% expressed that policy and regulatory frameworks were associated with the adoption of solar energy. This study found that there are no statistically significant factors influencing barriers to the adoption of solar energy. The price of solar energy adoption was identified as the least factor associated with the acceptance or rejection of solar energy. Nonetheless, the reasons given by the homes that had embraced solar technology aligned with the findings of other studies. This survey also found that although the public was aware of solar energy, and technology, there were still a number of factors that mattered, especially for non-adopters. 展开更多
关键词 solar Energy Small and Medium Enterprises solar Energy Adoption
下载PDF
Trends in Global Solar Radiation and Sunshine Duration in Past Two Decades in Japan
16
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第10期221-237,共17页
Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a... Global solar radiation (GSR) is an essential physical quantity for agricultural management and designing infrastructures. Because GSR has often been modeled as a function of sunshine duration (SD) and day length for a given set of locations and calendar days, analyzing interannual trends in GSR and SD is important to evaluate, predict or regulate the cycles of energy and water between geosphere and atmosphere. This study aimed to exemplify interannual trends in GSR and SD, which had been recorded from 2001 to 2022 in 40 meteorological stations in Japan, and validate the applicability of an SD-based model to the evaluation of GSR. Both the measured GSR and SD had increased in many of the stations in the study period with averaged rates of 0.252 [W·m−2·y−1] and 0.015 [h·d−1·y−1], respectively. The offset and the slope of the SD-based model were estimated by fitting the model to the measured data sets and were found to have been almost constant with the averages of 0.201[-] and 0.566[-], respectively, indicating that characteristics of the SD-GSR relation had not varied for the 22-year period and that the model and its parameter set can be stationarily applicable to the analyses and predictions of GSR in recent years. The stable trends in both parameters also implied that the upward trend in SD can be a main explanatory factor for that in the measured GSR. The upward trend in SD had coincided with the increase in the frequency of heavy-shortened rains, suggesting that the time period of each rainfall event had gradually decreased, which may be attributable to the obtained upward trend in SD. Further studies are required to clarify if there is some cause-effect relation between the changes in rainfall patterns and the standard level of solar radiation reaching the land surface. 展开更多
关键词 Angstrom-Prescott Model Atmospheric Transmittance Cloud Cover Extraterrestrial solar Radiation Global Brightening Hour Angle solar Declination True Anomaly
下载PDF
Statistical Study of the Geoeffectivity of Halo Coronal Mass Ejections Associated with X-Class Flares during Solar Cycles 23 and 24
17
作者 Younoussa Diakite Christian Zoundi +1 位作者 M’Bi Kabore Jean Louis Zerbo 《Open Journal of Applied Sciences》 2024年第4期950-960,共11页
By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ej... By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ejections associated with X-class flares appear to be among the most energetic events in solar activity given the size of the flares, the speed of the CMEs and the intense geomagnetic storms they produce. Out of eighty-six (86) X-class halo CMEs, thirty-seven (37) or 43% are highly geoeffective;twenty-four (24) or approximately 28% are moderately geoeffective and twenty-five (25) or 29% are not geoeffective. Over the two solar cycles (1996 to 2019), 71% of storms were geoeffective and 29% were not. For solar cycle 23, about 78% of storms were geoeffective, while for solar cycle 24, about 56% were geoeffective. For the statistical study based on speed, 85 halo CMEs associated with X-class flares were selected because the CME of 6 December 2006 has no recorded speed value. For both solar cycles, 75.29% of the halo CMEs associated with X-class flares have a speed greater than 1000 km/s. The study showed that 42.18% of halo (X) CMEs with speeds above 1000 km/s could cause intense geomagnetic disturbances. These results show the contribution (in terms of speed) of each class of halo (X) CMEs to the perturbation of the Earth’s magnetic field. Coronal mass ejections then become one of the key indicators of solar activity, especially as they affect the Earth. 展开更多
关键词 CME Halo (X) Geoeffectivity Geomagnetic Storm solar Flare solar Cycle
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
18
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 solar Photovoltaic (PV) Modules Thermal Efficiency Analysis Open Circuit Voltage Computational Fluid Dynamics (CFD) solar Panel Temperature Profile
下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting 被引量:2
19
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:2
20
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部