作为四代堆6种候选堆型中唯一的液态燃料反应堆,熔盐堆对未来核能和钍资源利用具有重要意义,特别是熔盐快堆(Molten Salt Fast Reactor,MSFR)还具有较大的增殖比和较好的温度负反馈。由于启动新的熔盐快堆需要较高的燃料装载量,若能改善...作为四代堆6种候选堆型中唯一的液态燃料反应堆,熔盐堆对未来核能和钍资源利用具有重要意义,特别是熔盐快堆(Molten Salt Fast Reactor,MSFR)还具有较大的增殖比和较好的温度负反馈。由于启动新的熔盐快堆需要较高的燃料装载量,若能改善MSFR的增殖性能,则有利于提高233U产量并缩短燃料倍增时间。首先应用SCALE6.1针对MSFR的径向增殖盐、新增轴向增殖盐和新增石墨反射层这三方面分析了初始增殖比,同时从核素吸收率角度说明增殖比变化的原因和MSFR的设计不足并对其进行了优化;然后应用基于SCALE6.1开发的熔盐堆在线处理模块(Molten Salt Reactor Reprocessing Sequence,MSR-RS)进行燃耗分析。结果表明,新增轴向增殖盐可以进一步提高增殖性能;新增石墨反射层可以节省增殖盐装载量。改进后的堆型运行时增殖比可以维持在1.1以上,233U年产量提高至133 kg,倍增时间缩短至36 a,并且堆芯在整个运行寿期都能保持足够的温度负反馈。展开更多
钍基熔盐堆(Thorium Molten Salt Reactor-Liquid Fuel,TMSR-LF1)回路管道最高运行温度达650℃,高温服役下的管道蠕变-疲劳损伤分析及评定至关重要。目前仅ASME-BPVC-III-5-HBB规范中有适用于高温核一级管道的蠕变-疲劳损伤暂行评定方法...钍基熔盐堆(Thorium Molten Salt Reactor-Liquid Fuel,TMSR-LF1)回路管道最高运行温度达650℃,高温服役下的管道蠕变-疲劳损伤分析及评定至关重要。目前仅ASME-BPVC-III-5-HBB规范中有适用于高温核一级管道的蠕变-疲劳损伤暂行评定方法,但该方法对于复杂管道系统使用起来过于繁琐。本文旨在使用管道分析软件PepS软件实现高温核一级复杂管系的分析与结构完整性评估。首先结合管道结构在多种载荷组合作用下的截面应力状态解析解,进行管道截面应力分析及应力线性化,并将结果与有限元数值解进行对比分析,两者的误差结果基本一致。随后,利用PepS软件对TMSR-LF1回路管道进行了力学分析和结构完整性评估,结其蠕变疲劳损伤结果位于包络线以内,满足蠕变疲劳极限的要求。该研究将管道分析软件与ASME评定规范进行了有效衔接,明确了评定方法,实现了高温核一级复杂管系的蠕变疲劳评估。展开更多
锂(Li)元素是液态熔盐堆中冷却剂熔盐的重要组成成分,由于^6Li相对^7Li具有较大的中子吸收截面,其在冷却剂熔盐中的摩尔含量会影响液态熔盐堆的钍铀转换性能,因此研究7Li富集度对液态熔盐堆钍铀转换性能的影响十分必要。基于熔盐快堆(Mo...锂(Li)元素是液态熔盐堆中冷却剂熔盐的重要组成成分,由于^6Li相对^7Li具有较大的中子吸收截面,其在冷却剂熔盐中的摩尔含量会影响液态熔盐堆的钍铀转换性能,因此研究7Li富集度对液态熔盐堆钍铀转换性能的影响十分必要。基于熔盐快堆(Molten Salt Fast Reactor,MSFR)的堆芯结构,分别采用FLi和FLiBe两种不同的冷却剂熔盐,选取范围在99.5%~99.995%的一系列^7Li富集度,借助熔盐堆后处理程序MSR-RS(Molten Salt Reactor Reprocessing Sequence),针对能谱、^233U初装量、钍铀转换比、^233U净产量和倍增时间、Li的演化以及氚产量等一系列参数进行分析。研究结果表明:在MSFR的堆芯中,较FLiBe而言,采用FLi作载体盐能够获得更好的钍铀转换性能;当^7Li富集度由99.995%变为99.9%时,堆芯钍铀转换比降低约1.6%,氚产量增加约8%。综合考虑燃料制造成本和钍铀转换性能等因素,对于分别采用FLi和FLiBe作载体盐的熔盐快堆MSFR,推荐的^7Li富集度都为99.9%。展开更多
反应堆设计中需给出各个参数不确定度,核数据是反应性相关参数不确定度的重要来源。利用SCALE6.1程序中TRITON(Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)、TSUNAMI-3D(Tools for Sensitivit...反应堆设计中需给出各个参数不确定度,核数据是反应性相关参数不确定度的重要来源。利用SCALE6.1程序中TRITON(Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)、TSUNAMI-3D(Tools for Sensitivity and Uncertainty Analysis Methodology Implementation in Three Dimensions)和TSAR(Tool for Sensitivity Analysis of Reactivity Responses)模块,结合自带44群协方差数据库,分析了熔盐实验堆反应性相关参数。给出核数据不确定度导致寿期初和寿期末k_(eff)、控制棒价值及温度反应性不确定度分别为522×10^(-5)、506×10^(-5)、96.70×10^(-5)和8.90×10^(-5)。结合灵敏度系数和核数据的标准偏差分析,结果显示:对k_(eff)影响较大的核素及反应道为235U()、(n,γ)、^(238)U(n,γ)、C-graphite(n,el)、~7Li(n,γ)、^(239)Pu()、(n,f)和^(135)Xe(n,γ)等核反应数据;对控制棒价值和温度反应性影响比较大的核素及反应道为^(19)F(n,el)、^(58)Ni(n,γ)、~6Li(n,t)等核反应数据。展开更多
文摘作为四代堆6种候选堆型中唯一的液态燃料反应堆,熔盐堆对未来核能和钍资源利用具有重要意义,特别是熔盐快堆(Molten Salt Fast Reactor,MSFR)还具有较大的增殖比和较好的温度负反馈。由于启动新的熔盐快堆需要较高的燃料装载量,若能改善MSFR的增殖性能,则有利于提高233U产量并缩短燃料倍增时间。首先应用SCALE6.1针对MSFR的径向增殖盐、新增轴向增殖盐和新增石墨反射层这三方面分析了初始增殖比,同时从核素吸收率角度说明增殖比变化的原因和MSFR的设计不足并对其进行了优化;然后应用基于SCALE6.1开发的熔盐堆在线处理模块(Molten Salt Reactor Reprocessing Sequence,MSR-RS)进行燃耗分析。结果表明,新增轴向增殖盐可以进一步提高增殖性能;新增石墨反射层可以节省增殖盐装载量。改进后的堆型运行时增殖比可以维持在1.1以上,233U年产量提高至133 kg,倍增时间缩短至36 a,并且堆芯在整个运行寿期都能保持足够的温度负反馈。
文摘钍基熔盐堆(Thorium Molten Salt Reactor-Liquid Fuel,TMSR-LF1)回路管道最高运行温度达650℃,高温服役下的管道蠕变-疲劳损伤分析及评定至关重要。目前仅ASME-BPVC-III-5-HBB规范中有适用于高温核一级管道的蠕变-疲劳损伤暂行评定方法,但该方法对于复杂管道系统使用起来过于繁琐。本文旨在使用管道分析软件PepS软件实现高温核一级复杂管系的分析与结构完整性评估。首先结合管道结构在多种载荷组合作用下的截面应力状态解析解,进行管道截面应力分析及应力线性化,并将结果与有限元数值解进行对比分析,两者的误差结果基本一致。随后,利用PepS软件对TMSR-LF1回路管道进行了力学分析和结构完整性评估,结其蠕变疲劳损伤结果位于包络线以内,满足蠕变疲劳极限的要求。该研究将管道分析软件与ASME评定规范进行了有效衔接,明确了评定方法,实现了高温核一级复杂管系的蠕变疲劳评估。
文摘锂(Li)元素是液态熔盐堆中冷却剂熔盐的重要组成成分,由于^6Li相对^7Li具有较大的中子吸收截面,其在冷却剂熔盐中的摩尔含量会影响液态熔盐堆的钍铀转换性能,因此研究7Li富集度对液态熔盐堆钍铀转换性能的影响十分必要。基于熔盐快堆(Molten Salt Fast Reactor,MSFR)的堆芯结构,分别采用FLi和FLiBe两种不同的冷却剂熔盐,选取范围在99.5%~99.995%的一系列^7Li富集度,借助熔盐堆后处理程序MSR-RS(Molten Salt Reactor Reprocessing Sequence),针对能谱、^233U初装量、钍铀转换比、^233U净产量和倍增时间、Li的演化以及氚产量等一系列参数进行分析。研究结果表明:在MSFR的堆芯中,较FLiBe而言,采用FLi作载体盐能够获得更好的钍铀转换性能;当^7Li富集度由99.995%变为99.9%时,堆芯钍铀转换比降低约1.6%,氚产量增加约8%。综合考虑燃料制造成本和钍铀转换性能等因素,对于分别采用FLi和FLiBe作载体盐的熔盐快堆MSFR,推荐的^7Li富集度都为99.9%。
文摘反应堆设计中需给出各个参数不确定度,核数据是反应性相关参数不确定度的重要来源。利用SCALE6.1程序中TRITON(Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)、TSUNAMI-3D(Tools for Sensitivity and Uncertainty Analysis Methodology Implementation in Three Dimensions)和TSAR(Tool for Sensitivity Analysis of Reactivity Responses)模块,结合自带44群协方差数据库,分析了熔盐实验堆反应性相关参数。给出核数据不确定度导致寿期初和寿期末k_(eff)、控制棒价值及温度反应性不确定度分别为522×10^(-5)、506×10^(-5)、96.70×10^(-5)和8.90×10^(-5)。结合灵敏度系数和核数据的标准偏差分析,结果显示:对k_(eff)影响较大的核素及反应道为235U()、(n,γ)、^(238)U(n,γ)、C-graphite(n,el)、~7Li(n,γ)、^(239)Pu()、(n,f)和^(135)Xe(n,γ)等核反应数据;对控制棒价值和温度反应性影响比较大的核素及反应道为^(19)F(n,el)、^(58)Ni(n,γ)、~6Li(n,t)等核反应数据。