多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信...多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势。针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力。提出了基于CP(CANDECOMP/PARAFAC)张量分解方法对未知信道状态(CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性。仿真结果表明,在接收天线数目大于发送天线数目且各径信道独立情况下,基于CP分解的接收信号盲检测算法在误码率为10-4时,随着接收天线数目增加,信噪比可获得约5 d B的增益。展开更多
文摘多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势。针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力。提出了基于CP(CANDECOMP/PARAFAC)张量分解方法对未知信道状态(CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性。仿真结果表明,在接收天线数目大于发送天线数目且各径信道独立情况下,基于CP分解的接收信号盲检测算法在误码率为10-4时,随着接收天线数目增加,信噪比可获得约5 d B的增益。