“精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素...“精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素在色彩信息和外形特征上差异较小,如何从二维影像中智能精准地识别“精灵圈”像素并对识别的单个像素形成个体“精灵圈”是目前的技术难点。本文提出了一种结合分割万物模型(Segment Anything Model,SAM)视觉分割模型与随机森林机器学习的无人机影像“精灵圈”分割及分类方法,实现了单个“精灵圈”的识别和提取。首先,通过构建索伦森-骰子系数(S?rensen-Dice coefficient,Dice)和交并比(Intersection over Union,IOU)评价指标,从SAM中筛选预训练模型并对其参数进行优化,实现全自动影像分割,得到无属性信息的分割掩码/分割类;然后,利用红、绿、蓝(RGB)三通道信息及空间二维坐标将分割掩码与原图像进行信息匹配,构造分割掩码的特征指标,并根据袋外数据(Out of Bag,OOB)误差减小及特征分布规律对特征进行分析和筛选;最后,利用筛选的特征对随机森林模型进行训练,实现“精灵圈”植被、普通植被和光滩的自动识别与分类。实验结果表明:本文方法“精灵圈”平均正确提取率96.1%,平均错误提取率为9.5%,为精准刻画“精灵圈”时空格局及海岸带无人机遥感图像处理提供了方法和技术支撑。展开更多
文摘“精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素在色彩信息和外形特征上差异较小,如何从二维影像中智能精准地识别“精灵圈”像素并对识别的单个像素形成个体“精灵圈”是目前的技术难点。本文提出了一种结合分割万物模型(Segment Anything Model,SAM)视觉分割模型与随机森林机器学习的无人机影像“精灵圈”分割及分类方法,实现了单个“精灵圈”的识别和提取。首先,通过构建索伦森-骰子系数(S?rensen-Dice coefficient,Dice)和交并比(Intersection over Union,IOU)评价指标,从SAM中筛选预训练模型并对其参数进行优化,实现全自动影像分割,得到无属性信息的分割掩码/分割类;然后,利用红、绿、蓝(RGB)三通道信息及空间二维坐标将分割掩码与原图像进行信息匹配,构造分割掩码的特征指标,并根据袋外数据(Out of Bag,OOB)误差减小及特征分布规律对特征进行分析和筛选;最后,利用筛选的特征对随机森林模型进行训练,实现“精灵圈”植被、普通植被和光滩的自动识别与分类。实验结果表明:本文方法“精灵圈”平均正确提取率96.1%,平均错误提取率为9.5%,为精准刻画“精灵圈”时空格局及海岸带无人机遥感图像处理提供了方法和技术支撑。