针对北京市通州区缺乏生态基流的相关研究,本文以通州区主要河流为研究对象,基于MIKE11模型模拟2019年主要河流氨氮变化特征,并在5个国家级和市级考核监测断面采用水文学法和模型模拟分析城市河道生态基流。结果表明:北运河上游年均氨...针对北京市通州区缺乏生态基流的相关研究,本文以通州区主要河流为研究对象,基于MIKE11模型模拟2019年主要河流氨氮变化特征,并在5个国家级和市级考核监测断面采用水文学法和模型模拟分析城市河道生态基流。结果表明:北运河上游年均氨氮浓度为III类;凉水河、潮白河上段以及北运河中下游为IV类;凤港减河、港沟河及潮白河下段为V类。除王家摆、许各庄断面外,其余断面两种生态基流计算方法的结果较为接近。运潮减河入潮白河口生态基流推荐值为5.5 m3/s、北运河王家摆7.44 m3/s、凉水河许各庄8.83 m3/s、凤港减河小屯4.27 m3/s,港沟河后元化2.97 m3/s。各生态基流保障率均值为89%~100%,基本满足设计保障率要求。本研究对北京市通州区生态基流开展了尝试性的研究工作,为水环境管理提供技术支撑。In view of the lack of ecological base flow in Tongzhou District of Beijing, the main rivers in Tongzhou District were taken as the research object, and the changes of ammonia nitrogen in the main rivers in 2019 were simulated based on the MIKE11 model, while the ecological base flow of urban river was analyzed by hydrologic method at 5 national and municipal examination and monitoring sections. The results show that the annual average ammonia nitrogen concentration in the upper reaches of the Beiyun River was class III;the Liangshui River, the upper part of the Chaobai River, and the middle and lower reaches of the Beiyun River were class IV;the Fenggangjian River, the Ganggou River, and the lower part of the Chaobai River were class V. The calculation results of the two methods are close to each other except Wangjiabai and Xugezhuang. The recommended values of ecological base flow are as follows: 5.5 m3/s at Yunchaojian River, 7.44 m3/s at Wangjiabai, 8.83 m3/s at Xugezhuang, 4.27 m3/s at Xiaotun and 2.97 m3/s at Houyuanhua. The average guarantee rate of ecological base flow is 89%~100%, which basically meets the requirement of design guarantee rate. The ecological base flow studied in Tongzhou District of Beijing will provide technical support for water environment management.展开更多
为实现吴忠市暴雨洪水管理模型(storm water management model,SWMM)的高效率定,分别采用修正的莫里斯(Morris)法和互信息法,分析了洪峰流量和径流系数的模拟结果对SWMM的7个相关产流参数的局部和全局敏感性.2种方法均识别出不透水面-...为实现吴忠市暴雨洪水管理模型(storm water management model,SWMM)的高效率定,分别采用修正的莫里斯(Morris)法和互信息法,分析了洪峰流量和径流系数的模拟结果对SWMM的7个相关产流参数的局部和全局敏感性.2种方法均识别出不透水面-曼宁系数(IMP-N)和不透水区洼地蓄水深度(IMP-DS)为SWMM的主要敏感参数.洪峰流量对IMP-N和IMP-DS最敏感,径流系数对IMP-DS最敏感;参数的敏感性随降雨强度的增大先增大后减小,洪峰流量对IMP-DS和IMP-N的敏感性分别在3和10 a的降雨重现期达到最大值,径流系数对IMP-DS和IMP-N的敏感性分别在2和3 a的降雨重现期达最大值;敏感参数间的协同作用随降雨强度增大而减弱.结果表明,吴忠市中心城区的易涝区应优先考虑增加地表粗糙度与洼地蓄水深度.本成果可为以高不透水率为特征的其他城市密集建成区的削峰减排提供参考.展开更多
文摘针对北京市通州区缺乏生态基流的相关研究,本文以通州区主要河流为研究对象,基于MIKE11模型模拟2019年主要河流氨氮变化特征,并在5个国家级和市级考核监测断面采用水文学法和模型模拟分析城市河道生态基流。结果表明:北运河上游年均氨氮浓度为III类;凉水河、潮白河上段以及北运河中下游为IV类;凤港减河、港沟河及潮白河下段为V类。除王家摆、许各庄断面外,其余断面两种生态基流计算方法的结果较为接近。运潮减河入潮白河口生态基流推荐值为5.5 m3/s、北运河王家摆7.44 m3/s、凉水河许各庄8.83 m3/s、凤港减河小屯4.27 m3/s,港沟河后元化2.97 m3/s。各生态基流保障率均值为89%~100%,基本满足设计保障率要求。本研究对北京市通州区生态基流开展了尝试性的研究工作,为水环境管理提供技术支撑。In view of the lack of ecological base flow in Tongzhou District of Beijing, the main rivers in Tongzhou District were taken as the research object, and the changes of ammonia nitrogen in the main rivers in 2019 were simulated based on the MIKE11 model, while the ecological base flow of urban river was analyzed by hydrologic method at 5 national and municipal examination and monitoring sections. The results show that the annual average ammonia nitrogen concentration in the upper reaches of the Beiyun River was class III;the Liangshui River, the upper part of the Chaobai River, and the middle and lower reaches of the Beiyun River were class IV;the Fenggangjian River, the Ganggou River, and the lower part of the Chaobai River were class V. The calculation results of the two methods are close to each other except Wangjiabai and Xugezhuang. The recommended values of ecological base flow are as follows: 5.5 m3/s at Yunchaojian River, 7.44 m3/s at Wangjiabai, 8.83 m3/s at Xugezhuang, 4.27 m3/s at Xiaotun and 2.97 m3/s at Houyuanhua. The average guarantee rate of ecological base flow is 89%~100%, which basically meets the requirement of design guarantee rate. The ecological base flow studied in Tongzhou District of Beijing will provide technical support for water environment management.