随着分布式清洁能源发电技术的发展,传统电力用户逐渐转变为电能产消者,并可采用合作联盟形式参与电力P2P(peer to peer)交易,促进分布式清洁能源就地消纳。该文通过从源端和传输端分别核算碳减排量的方法,构建一类考虑经济效益和环境...随着分布式清洁能源发电技术的发展,传统电力用户逐渐转变为电能产消者,并可采用合作联盟形式参与电力P2P(peer to peer)交易,促进分布式清洁能源就地消纳。该文通过从源端和传输端分别核算碳减排量的方法,构建一类考虑经济效益和环境效益的社会福利函数,研究分布式电能产消者通过合作联盟形式实现社会福利最大化的途径。设计一种依据产消者对联盟社会福利贡献值分配合作剩余的机制,激励产消者合作的积极性以维持联盟的稳定。算例分析表明:相较于P2G(peer-to-grid)交易和非合作P2P交易,产消者以合作联盟方式参与电力P2P交易的社会福利分别提升了62.62%、33.79%。因此,以市场化的方式组建合作联盟参与电力P2P交易并合理分配利益,可挖掘分布式清洁能源就地消纳的潜力,促进能源消费的绿色低碳转型。展开更多
为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(...为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。展开更多
文摘随着分布式清洁能源发电技术的发展,传统电力用户逐渐转变为电能产消者,并可采用合作联盟形式参与电力P2P(peer to peer)交易,促进分布式清洁能源就地消纳。该文通过从源端和传输端分别核算碳减排量的方法,构建一类考虑经济效益和环境效益的社会福利函数,研究分布式电能产消者通过合作联盟形式实现社会福利最大化的途径。设计一种依据产消者对联盟社会福利贡献值分配合作剩余的机制,激励产消者合作的积极性以维持联盟的稳定。算例分析表明:相较于P2G(peer-to-grid)交易和非合作P2P交易,产消者以合作联盟方式参与电力P2P交易的社会福利分别提升了62.62%、33.79%。因此,以市场化的方式组建合作联盟参与电力P2P交易并合理分配利益,可挖掘分布式清洁能源就地消纳的潜力,促进能源消费的绿色低碳转型。
文摘为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。