常温、真空条件下,SiO_2气凝胶材料的导热性能决定了真空绝热板的表观导热性能,真空条件下影响其等效热导率的因素及对影响因素的规律研究可为芯材和真空绝热板的生产提供理论依据。文章基于气凝胶绝热材料的热导率计算模型,利用MATLAB...常温、真空条件下,SiO_2气凝胶材料的导热性能决定了真空绝热板的表观导热性能,真空条件下影响其等效热导率的因素及对影响因素的规律研究可为芯材和真空绝热板的生产提供理论依据。文章基于气凝胶绝热材料的热导率计算模型,利用MATLAB软件编程计算其有效热导率,研究了压强、密度、纤维体积分数对SiO_2气凝胶绝热材料等效热导率的影响规律。结果表明:常温条件下,随着压强降低,气凝胶的热导率显著降低,压强<1 k Pa时,气凝胶的热导率随压强降低趋于平缓,材料内气相热导率降低;密度减小使得固相热导率降低,而同时孔隙率增大使气相热导率增加,二者共同作用时,气凝胶材料存在最佳密度值,导致总热导率最小;纤维体积分数增加,固相热导率增大,增加对材料内部热辐射的抑制,最佳纤维体积分数使复合了纤维的SiO_2气凝胶材料热导率最小。展开更多
文摘常温、真空条件下,SiO_2气凝胶材料的导热性能决定了真空绝热板的表观导热性能,真空条件下影响其等效热导率的因素及对影响因素的规律研究可为芯材和真空绝热板的生产提供理论依据。文章基于气凝胶绝热材料的热导率计算模型,利用MATLAB软件编程计算其有效热导率,研究了压强、密度、纤维体积分数对SiO_2气凝胶绝热材料等效热导率的影响规律。结果表明:常温条件下,随着压强降低,气凝胶的热导率显著降低,压强<1 k Pa时,气凝胶的热导率随压强降低趋于平缓,材料内气相热导率降低;密度减小使得固相热导率降低,而同时孔隙率增大使气相热导率增加,二者共同作用时,气凝胶材料存在最佳密度值,导致总热导率最小;纤维体积分数增加,固相热导率增大,增加对材料内部热辐射的抑制,最佳纤维体积分数使复合了纤维的SiO_2气凝胶材料热导率最小。