The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems(MEMS/NEMS)and flexible electronics. This article reviews ongoing...The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems(MEMS/NEMS)and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques,such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.展开更多
The mechanical response of the human arterial wall under the combined loading of inflation, axial extension, and torsion is examined within the framework of the large deformation hyper-elastic theory. The probability ...The mechanical response of the human arterial wall under the combined loading of inflation, axial extension, and torsion is examined within the framework of the large deformation hyper-elastic theory. The probability of the aneurysm formation is explained with the instability theory of structure, and the probability of its rupture is explained with the strength theory of material. Taking account of the residual stress and the smooth muscle activities, a two layer thick-walled circular cylindrical tube model with fiber-reinforced composite-based incompressible anisotropic hyper-elastic materials is employed to model the mechanical behavior of the arterial wall. The deformation curves and the stress distributions of the arterial wall are given under normal and abnormal conditions. The results of the deformation and the structure instability analysis show that the model can describe the uniform inflation deformation of the arterial wall under normal conditions, as well as formation and growth of an aneurysm under abnormal conditions such as the decreased stiffness of the elastic and collagen fibers. From the analysis of the stresses and the material strength, the rupture of an aneurysm may also be described by this model if the wall stress is larger than its strength.展开更多
A new model in nonholonomic mechanics, the Rosen-Edelstein model, has been studied. We prove that the new model is a Lagrange problem in which the action integral ∫t0^t1 Ldt can be made stationary. The theoretical ba...A new model in nonholonomic mechanics, the Rosen-Edelstein model, has been studied. We prove that the new model is a Lagrange problem in which the action integral ∫t0^t1 Ldt can be made stationary. The theoretical basis of nonholonomic mechanics is investigated and discussed. Finally, we give the range of practical applications of the Rosen-Edelstein model.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban...A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.展开更多
The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material mult...The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.展开更多
Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- ample...Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- amples among them. From the microscopic view, a lo- cal region in the medium is occupied by particles with small but finite sizes and granular material is naturally modeled as an assembly of discrete particles in contacts On the other hand, the local region is identified with a material point in the overall structure and this discon- tinuous medium can then be represented by an effective continuum on the macroscopic level展开更多
Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modifi ed molecular structure mechanics method was developed to improve the original one, that is, the se...Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modifi ed molecular structure mechanics method was developed to improve the original one, that is, the semi-rigid connections were used to model the bond angle variations between the C-Cbonds in graphene. The simulated results show that the equivalent space frame model with semi-rigid connections for graphene proposed in this article is a simple, efficient, and accurate model to evaluate the equivalent elastic properties of graphene. Though the present computational model of the semi-rigid connected space frame is only applied to characterize the mechanical behaviors of the space lattices of graphene, it has more potential applications in the static and dynamic analyses of graphene and other nanomaterials.展开更多
Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil stru...Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices.展开更多
It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron curren...It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices.展开更多
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations...The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.展开更多
This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to gene...This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.展开更多
In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitud...In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical in...In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.展开更多
The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocit...The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of...The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability.展开更多
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ...Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.展开更多
In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a...In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a stretching sheet.Modified Buongiorno’s nanofluid model has been used to model the flow governing equations.The stretching surface is embedded in a porousmedium.By using similarity transformations,the nonlinear partial differential equations are transformed into a set of dimensionless ordinary differential equations.The numerical solution of transformed dimensionless equations is achieved by applying the shooting procedure together with Rung-Kutta 4th-order method employing MATLAB.The impact of significant parameters on the velocity profile f(ζ),temperature distributionθ(ζ),concentration profileϕ(ζ),skin friction coefficient(Cf),Nusselt number(Nux)and Sherwood number(Shx)are analyzed and displayed in graphical and tabular formats.With an increase in Casson fluid 0.5<β<2,the motion of the Casson fluid decelerates whereas the temperature profile increases.As the thermal relation factor expands 0.1<γ1<0.4,the temperature reduces,and consequently thermal boundary layer shrinks.Additionally,by raising the level of thermal radiation 1<Rd<7,the temperature profile significantly improves,and an abrupt expansion has also been observed in the associated thermal boundary with raise thermal radiation strength.It was observed that higher permeability 0<K<4 hinders the acceleration of Casson fluid.Higher Brownian motion levels 0.2<Nb<0.6 correspond to lower levels of the Casson fluid concentration profile.Moreover,it is observed that chemical reaction 0.2<γ2<0.5 has an inverse relation with the concentration level of Casson fluid.The current model’s significant uses include heat energy enhancement,petroleum recovery,energy devices,food manufacturing processes,and cooling device adjustment,among others.Furthermore,present outcomes have been found in great agreementwith already publishedwork.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11472186 and 11602083)the Natural Science Foundation of Hunan Province, China (Grant 2016JJ6044)
文摘The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems(MEMS/NEMS)and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques,such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.
基金Project supported by the National Natural Science Foundation of China (Nos.10772104 and 10872045)the Innovation Project of the Shanghai Municipal Education Commission (No.09YZ12)the Shanghai Leading Academic Discipline Project (No.S30106)
文摘The mechanical response of the human arterial wall under the combined loading of inflation, axial extension, and torsion is examined within the framework of the large deformation hyper-elastic theory. The probability of the aneurysm formation is explained with the instability theory of structure, and the probability of its rupture is explained with the strength theory of material. Taking account of the residual stress and the smooth muscle activities, a two layer thick-walled circular cylindrical tube model with fiber-reinforced composite-based incompressible anisotropic hyper-elastic materials is employed to model the mechanical behavior of the arterial wall. The deformation curves and the stress distributions of the arterial wall are given under normal and abnormal conditions. The results of the deformation and the structure instability analysis show that the model can describe the uniform inflation deformation of the arterial wall under normal conditions, as well as formation and growth of an aneurysm under abnormal conditions such as the decreased stiffness of the elastic and collagen fibers. From the analysis of the stresses and the material strength, the rupture of an aneurysm may also be described by this model if the wall stress is larger than its strength.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021) and the Doctoral Programme Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘A new model in nonholonomic mechanics, the Rosen-Edelstein model, has been studied. We prove that the new model is a Lagrange problem in which the action integral ∫t0^t1 Ldt can be made stationary. The theoretical basis of nonholonomic mechanics is investigated and discussed. Finally, we give the range of practical applications of the Rosen-Edelstein model.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金supported by the National Natural Science Foundation of China(Nos.12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.
文摘The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.
文摘Most of granular materials are highly heteroge- neous, composed of voids and particles with different sizes and shapes. Geological matter, soil and clay in nature, geo-structure, concrete, etc. are practical ex- amples among them. From the microscopic view, a lo- cal region in the medium is occupied by particles with small but finite sizes and granular material is naturally modeled as an assembly of discrete particles in contacts On the other hand, the local region is identified with a material point in the overall structure and this discon- tinuous medium can then be represented by an effective continuum on the macroscopic level
基金Funded by the Talent Foundation and Youth Foundation of Xi’an University of Architecture and Technology(Nos.DB12062 and QN1239)
文摘Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modifi ed molecular structure mechanics method was developed to improve the original one, that is, the semi-rigid connections were used to model the bond angle variations between the C-Cbonds in graphene. The simulated results show that the equivalent space frame model with semi-rigid connections for graphene proposed in this article is a simple, efficient, and accurate model to evaluate the equivalent elastic properties of graphene. Though the present computational model of the semi-rigid connected space frame is only applied to characterize the mechanical behaviors of the space lattices of graphene, it has more potential applications in the static and dynamic analyses of graphene and other nanomaterials.
文摘Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices.
基金the National Natural Science Foundation of China(Nos.12232007,11972164,and 12102141)。
文摘It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices.
基金Project supported by the National Natural Science Foundation of China(Nos.12293000,12293001,11988102,12172006,and 12202011)。
文摘The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.
基金Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267).
文摘This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.
文摘In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
基金supported in part by the National Natural Science Foundation of China(62073003,72131001)Hong Hong Research Grants Council under GRF grants(16200619,16201120,16205421,1620-3922)Shenzhen-Hong Kong-Macao Science and Technology Innovation Fund(SGDX20201103094600006)。
文摘In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12202309,1233000165,12172242,and 12272265)Science and Technology Program of Gansu Province of China(Grant No.22JR5RA304)Tianjin Research Innovation for Postgraduate Students(Grant No.22KJ049)。
文摘The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金supported by the National Natural Science Foundation of China(Nos.12272219,12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability.
基金supported by the National Natural Science Foundation of China(Nos.52106099 and 51576004)the Natural Science Foundation of Shandong Province(No.ZR2022YQ57)the Taishan Scholars Program.
文摘Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.
文摘In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a stretching sheet.Modified Buongiorno’s nanofluid model has been used to model the flow governing equations.The stretching surface is embedded in a porousmedium.By using similarity transformations,the nonlinear partial differential equations are transformed into a set of dimensionless ordinary differential equations.The numerical solution of transformed dimensionless equations is achieved by applying the shooting procedure together with Rung-Kutta 4th-order method employing MATLAB.The impact of significant parameters on the velocity profile f(ζ),temperature distributionθ(ζ),concentration profileϕ(ζ),skin friction coefficient(Cf),Nusselt number(Nux)and Sherwood number(Shx)are analyzed and displayed in graphical and tabular formats.With an increase in Casson fluid 0.5<β<2,the motion of the Casson fluid decelerates whereas the temperature profile increases.As the thermal relation factor expands 0.1<γ1<0.4,the temperature reduces,and consequently thermal boundary layer shrinks.Additionally,by raising the level of thermal radiation 1<Rd<7,the temperature profile significantly improves,and an abrupt expansion has also been observed in the associated thermal boundary with raise thermal radiation strength.It was observed that higher permeability 0<K<4 hinders the acceleration of Casson fluid.Higher Brownian motion levels 0.2<Nb<0.6 correspond to lower levels of the Casson fluid concentration profile.Moreover,it is observed that chemical reaction 0.2<γ2<0.5 has an inverse relation with the concentration level of Casson fluid.The current model’s significant uses include heat energy enhancement,petroleum recovery,energy devices,food manufacturing processes,and cooling device adjustment,among others.Furthermore,present outcomes have been found in great agreementwith already publishedwork.