期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Hydrodechlorination of trifluoro-trichloroethane to chlorotrifluoroethylene:Revealing the deactivation mechanism and regeneration strategy of Pd-Cu/AC catalyst
1
作者 Song Tian Yicheng Chen +7 位作者 Xiaoyu Wen Bingcheng Li Jian Lu Zile Li Feng Feng Qingtao Wang Qunfeng Zhang Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期261-268,共8页
Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst... Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method. 展开更多
关键词 CFC-113 HYDRODECHLORINATION CHLOROTRIFLUOROETHYLENE Catalyst deactivation
下载PDF
Accelerating the Screening of Modified MA_(2)Z_(4)Catalysts for Hydrogen Evolution Reaction by Deep Learning-Based Local Geometric Analysis
2
作者 Jingnan Zheng Shibin Wang +3 位作者 Shengwei Deng Zihao Yao Junhua Hu Jianguo Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期290-302,共13页
Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity rela... Machine learning(ML)integrated with density functional theory(DFT)calculations have recently been used to accelerate the design and discovery of single-atom catalysts(SACs)by establishing deep structure–activity relationships.The traditional ML models are always difficult to identify the structural differences among the single-atom systems with different modification methods,leading to the limitation of the potential application range.Aiming to the structural properties of several typical two-dimensional MA_(2)Z_(4)-based single-atom systems(bare MA_(2)Z_(4)and metal single-atom doped/supported MA_(2)Z_(4)),an improved crystal graph convolutional neural network(CGCNN)classification model was employed,instead of the traditional machine learning regression model,to address the challenge of incompatibility in the studied systems.The CGCNN model was optimized using crystal graph representation in which the geometric configuration was divided into active layer,surface layer,and bulk layer(ASB-GCNN).Through ML and DFT calculations,five potential single-atom hydrogen evolution reaction(HER)catalysts were screened from chemical space of 600 MA_(2)Z_(4)-based materials,especially V_(1)/HfSn_(2)N_(4)(S)with high stability and activity(Δ_(GH*)is 0.06 eV).Further projected density of states(pDOS)analysis in combination with the wave function analysis of the SAC-H bond revealed that the SAC-dz^(2)orbital coincided with the H-s orbital around the energy level of−2.50 eV,and orbital analysis confirmed the formation ofσbonds.This study provides an efficient multistep screening design framework of metal single-atom catalyst for HER systems with similar two-dimensional supports but different geometric configurations. 展开更多
关键词 graph convolutional neural network hydrogen evolution reaction modified MA_(2)Z_(4)substrate single atom catalyst
下载PDF
Functional Polyethylene Glycol with Carboxyl-supported Platinum as an Efficient Catalysis System for the Hydrosilylation of Alkenes 被引量:1
3
作者 白赢 彭家建 +3 位作者 杨虎 厉嘉云 来国桥 李小年 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期246-253,共8页
A series of carboxylated long chain polyethylene glycols(abbreviated as PEGCOOH) has been synthesized and used to support chloroplatinic acid.These supported catalysts were then tested for their efficiency in the hydr... A series of carboxylated long chain polyethylene glycols(abbreviated as PEGCOOH) has been synthesized and used to support chloroplatinic acid.These supported catalysts were then tested for their efficiency in the hydrosilylation of alkenes.The factors affecting their catalytic properties,e.g.relative molecular mass of polyethylene glycol,reaction temperature,platinum content,and type of alkenes,have been studied.It was found that the activity of the platinum catalyst decreased with increasing length of the polyethylene glycol chain,and increased with reaction temperature.Moreover,these catalysts could be reused several times without a noticeable decrease in activity or selectivity.The reaction pathway leading to excellent selectivity for the β-adduct of hydrosilylation of alkenes with triethoxysilane catalyzed by this catalysis system was discussed. 展开更多
关键词 polyethylene glycol modification PLATINUM HYDROSILYLATION ALKENE
下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:13
4
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 Transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) Overall water electrolysis
下载PDF
Recent advances of transition-metal metaphosphates for efficient electrocatalytic water splitting 被引量:2
5
作者 Yuanyuan Zhang Jie Wu +4 位作者 Bingrong Guo Haohao Huo Siqi Niu Siwei Li Ping Xu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期153-174,共22页
Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a hi... Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field. 展开更多
关键词 ELECTROCATALYSIS synthetic strategies transition-metal metaphosphates water splitting
下载PDF
Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene 被引量:1
6
作者 Qunfeng Zhang Bingcheng Li +6 位作者 Yuan Zhou Deshuo Zhang Chunshan Lu Feng Feng Jinghui Lv Qingtao Wang Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期69-75,共7页
The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carrier... The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carriers doped with varying sources of sulfur(Na_(2)SO_(4),NaHSO_(3),Na_(2)S·9H_(2)O).Palladium carbon catalysts doped with different sulfur precursors had been prepared with the aid of the liquid-phase reduction method of the selective hydrogenation of o-chloronitrobenzene(o-CNB)to o-chloroaniline(o-CAN).The catalyst prepared for Na_(2)S·9H_(2)O as a precursor has excellent performance,and the selectivity for o-CAN is more than 99.9%at 100%conversion.In addition,the characterization results show that with the decrease of S valence,the electronic effect between S and Pd increases,and the outer electron shift of Pd increases,which reduces the adsorption and dissociation ability of Pd to hydrogen,resulting in excellent selectivity.The effects provided a good idea for the hydrogenation of o-CNB and a different point of view on sulfur doping in a variety of hydrogenation reactions. 展开更多
关键词 CATALYST HYDROGENATION SELECTIVITY Sulfur doping Electronic effect
下载PDF
Catalytic conversion of lignocellulosic biomass into chemicals and fuels 被引量:18
7
作者 Weiping Deng Yunchao Feng +21 位作者 Jie Fu Haiwei Guo Yong Guo Buxing Han Zhicheng Jiang Lingzhao Kong Changzhi Li Haichao Liu Phuc T.T.Nguyen Puning Ren Feng Wang Shuai Wang Yanqin Wang Ye Wang Sie Shing Wong Kai Yan Ning Yan Xiaofei Yang Yuanbao Zhang Zhanrong Zhang Xianhai Zeng Hui Zhou 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期10-114,共105页
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro... In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted. 展开更多
关键词 Lignocelullose BIOMASS Catalytic conversion Biofuels Renewable chemicals
下载PDF
Co@CoO:An efficient catalyst for the depolymerization and upgrading of lignocellulose to alkylcyclohexanols with cellulose intact 被引量:1
8
作者 Shuang Xiang Lin Dong +5 位作者 Zhiqiang Wang Xue Han Yong Guo Xiaohui Liu Xue-Qing Gong Yanqin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期191-199,I0006,共10页
The depolymerization and upgrading of lignin from raw biomass,while keeping cellulose intact is important in biorefinery and various metal-based catalysts have been used in reductive catalytic fractionation,a key meth... The depolymerization and upgrading of lignin from raw biomass,while keeping cellulose intact is important in biorefinery and various metal-based catalysts have been used in reductive catalytic fractionation,a key method in"lignin-first"strategy,Recently,we found that a core-shell structured Co@CoO catalyst with CoO shell as the real active site had excellent performance in the hydrogenolysis of 5-hydromethylfurfural to 2,5-dimethylfuran due to its unique ability to dissociate H_(2)and yield active H^(δ-)species(Xiang et al.,2022).In this work,we report a one-pot depolymerization and upgrading of lignocellulose to alkylcyclohexanols,a flavour precursor,with intact cellulose over this unique core-shell structured catalyst,Co@CoO.Lignin model compounds(β-O-4,4-O-5,α-O-4)were first used to clarify the activity of Co@CoO catalyst.Then,the one-pot conversion of various organosolv lignin(birch,pine and poplar)to alkylcyclohexanols was realized with the mass yield of alkylcyclohexanols up to25.8 wt%from birch lignin under the reaction condition of 210℃,1 MPa H_(2),16 h.Finally,the corresponding woody sawdusts were used as feedstocks and found that the Co@CoO catalyst indeed preferentially depolymerized and upgraded the lignin part and obtained the same alkylcyclohexanols products with the retention of cellulose-rich pulp.The collected alkylcyclohexanols were further esterified to obtain valueadded esters,which can be used as flavors.This work will inspire the design of new efficient metal oxide catalysts in lignin fractionation and depolymerization to high-value-added chemicals with intact cellulose. 展开更多
关键词 LIGNOCELLULOSE LIGNIN DEPOLYMERIZATION Co@CoO Alkylcyclohexanols
下载PDF
Role of intrinsic defects on carbon adsorbent for enhanced removal of Hg^(2+)in aqueous solution
9
作者 Liu He Yiyang Qiu +7 位作者 Chu Yao Guojun Lan Na Li Huacong Zhou Quansheng Liu Xiucheng Sun Zaizhe Cheng Ying Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期129-139,共11页
Carbon is a normally used adsorbent for removal of heavy metal ion in aqueous solutions,but the efficient adsorbent needs intensive modification by heteroatom doped or supported noble metals that cause severe pollutio... Carbon is a normally used adsorbent for removal of heavy metal ion in aqueous solutions,but the efficient adsorbent needs intensive modification by heteroatom doped or supported noble metals that cause severe pollution and easy leaching of active components during use.In this paper,the role of intrinsic defects on Hg^(2+)adsorption for carbon adsorbent was investigated.The maximum adsorbing capacity of defectrich carbon has been improved up to 433 mg·g^(-1)which is comparable to most of the modified carbon adsorbents via supported metal chloride or noble metal components.The basicity is increased with the content of defective sites and the strong chemical bonding can be formed via electron transformation between the defect sites with adsorbed Hg^(2+).The present study gives a direction to explore cheap and easily scale-up high-performance mercury adsorbents by simply tuning the intrinsic defective structure of carbon without the necessity to support metal or other organic compounds. 展开更多
关键词 Mercury-ion removal Adsorption Carbon adsorbent Defect sites
下载PDF
Surface reconstruction of Se-doped NiS_(2) enables high-efficiency oxygen evolution reaction
10
作者 Mengxin Chen Yuanyuan Zhang +5 位作者 Ran Wang Bin Zhang Bo Song Yanchao Guan Siwei Li Ping Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期173-180,共8页
Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) throu... Surface reconstruction of electrocatalysts has been widely witnessed during the electrochemical processes.Here,NiS_(2),NiSe_(2), and Se doped NiS_(2)(Se-NiS_(2)) are fabricated for oxygen evolution reaction(OER) through a mild sulfuration and/or selenylation process of Ni(OH)_(2) supported on carbon cloth(CC).Through careful in-situ Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy,surface reconstruction of NiS_(2),NiSe_(2),and Se-NiS_(2) during the OER process has been revealed.A potentialdependent study shows that Se-NiS_(2) undergoes surface evolution at lower potentials and requires the lowest potential for conversion to NiOOH as a highly OER-active species,accompanied by the leaching of SO_(4)^(2-) and SeO_(4)^(2-) that can again be adsorbed on the catalyst surface to enhance the catalytic activity.Density functional theory(DFT) calculations confirm that Se-NiS_(2) is more susceptible to surface oxidation through the OER process.Therefore,Se-NiS_(2) exhibits outstanding OER activity and stability in alkaline conditions,requiring an overpotential of 343 mV at a current density of 50 mA cm^(-2).A novel insight is provided by our work in understanding the surface reconstruction and electrocatalytic mechanism of Ni-based chalcogenides. 展开更多
关键词 Oxygen evolution reaction Se-NiS_(2) In-situ Raman spectroscopy Anion leaching Surface reconstruction
下载PDF
Highly efficient photo-thermal synergistic catalysis of CO_(2)methanation over La_(1-x)Ce_(x)NiO_(3)perovskite-catalyst
11
作者 Ting Li Zhen-Yu Zhang +5 位作者 De-Cun Luo Bo-Yu Xu Rong-Jiang Zhang Ji-Long Yao Dan Li Tao Xie 《Nano Research》 SCIE EI CSCD 2024年第9期7945-7956,共12页
Solar-driven photo-thermal catalytic CO_(2)methanation reaction is a promising technology to alleviate the problems posed by greenhouse gases emissions.However,designing advanced photo-thermal catalysts remains a rese... Solar-driven photo-thermal catalytic CO_(2)methanation reaction is a promising technology to alleviate the problems posed by greenhouse gases emissions.However,designing advanced photo-thermal catalysts remains a research challenge for CO_(2)methanation reaction.In this work,a series of ABO3(A=lanthanide,B=transition metal)perovskite catalysts with Ce-substituted LaNiO3(La_(1-x)Ce_(x)NiO_(3),x=0,0.2,0.5,0.8,1)were synthesized for CO_(2)methanation.The La_(0.2)Ce_(0.8)NiO_(3) exhibited the highest CH_(4) formation rate of 258.9 mmol·g^(-1)·hcat-1,CO_(2)conversion of 55.4%and 97.2%CH_(4) selectivity at 300℃with the light intensity of 2.9 W·cm^(-2).Then the catalysts were thoroughly analyzed by physicochemical structure and optical properties characterizations.The partial substitution of the A-site provided more active sites for the adsorption and activation of CO_(2)/H_(2).The sources of the active sites were considered to be the oxygen vacancies(O_(v))created by lattice distortions due to different species of ions(La^(3+),Ce^(4+),Ce^(3+))and exsolved Ni0 by H_(2)reduction.The catalysts have excellent light absorption absorbance and low electron-hole(e^(-)/h^(+))recombination rate,which greatly contribute to the excellent performance in photo-thermal synergistic catalysis(PTC)CO_(2)methanation.The results of in situ irradiated electron paramagnetic resonance spectrometer(ISI-EPR)and ISI-X-ray photoelectron spectroscopy(XPS)indicated that the aggregation of unpaired electrons near the defects and Ni metal(from La and Ce ions to Ov and Ni0)accelerated adsorption and activation of CO_(2)/H_(2).At last,the catalyst properties and structure were correlated with the proposed reaction mechanism from the in situ diffuse reflection infrared Fourier transform spectrum(DRIFTS)measurements.The in situ precipitation of the B-site enhanced the dispersion of Ni,while its enriched photoelectrons upon illumination further promote hydrogen dissociation.More H^(*)spillover accelerated the rate-determining step(RDS)of HCOO*hydrogenation.This work provides the theoretical basis for the development of catalysts and industrial application. 展开更多
关键词 photo-thermal catalysis CO_(2)methanation PEROVSKITE A-site substitution in situ diffuse reflection infrared Fourier transform spectrum(DRIFTS)
原文传递
Synthesis of Ln-doped MCM-41 mesoporous materials and their catalytic performance in oxidation of styrene 被引量:9
12
作者 詹望成 卢冠忠 +2 位作者 郭杨龙 郭耘 王筠松 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期59-65,共7页
Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the fram... Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the framework under hydrothermal conditions. The structure and the state of La or Ce were investigated through the analyses of XRD, nitrogen adsorption-desorption, FT-IR, and UV-Vis. XRD and N2 adsorption-desorption results showed that Ln-MCM-41 exhibited the loss of the lattice ordering of the MCM-41 construct, and larger unit cell parameter and pore diameter than pure silica MCM-41. The FT-IR and UV-Vis results indicated the presence of isolated tetra-coordinated La or Ce ions in the framework and other Ln species dispersed highly on the Ln-MCM-41 surface simultaneously. Furthermore, their catalytic behaviors in the oxidation of styrene were studied using H2O2 as the oxidant. The La-MCM-41 catalysts exhibited high reactivity and the reactivity increased with the increase of the La content in the La-MCM-41 samples. On the contrary, Ce-MCM-41 catalysts showed low reactivity in the oxidation of styrene and the conversion of styrene decreased with the increase of the Ce content in the Ce-MCM-41 samples. 展开更多
关键词 Ln-MCM-41 mesoporous materials STYRENE OXIDATION rare earths
下载PDF
High-yield production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over carbon supported Ni–Co bimetallic catalyst 被引量:7
13
作者 Panpan Yang Qineng Xia +1 位作者 Xiaohui Liu Yanqin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1015-1020,共6页
The catalytic conversion of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) has attracted extensive research interests because DMF can be used as potential and competitive renewable transportation fuel or add... The catalytic conversion of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) has attracted extensive research interests because DMF can be used as potential and competitive renewable transportation fuel or additives. Here we report a non-noble bimetallic catalyst with improved activity for hydrogenation and hydrogenolysis by introducing active carbon as support into a nickel–cobalt catalyst. The characterizations of the catalyst indicate that the Ni and Co species are uniformly dispersed on the active carbon through the wetness impregnation method. The influences of reaction temperature and hydrogen pressure are systematically investigated and an excellent yield (up to 95%) of DMF can be obtained at relatively mild conditions, 130 °C and 1 MPa H2, over the carbon supported Ni–Co bimetallic catalyst. The high catalytic activity originates from the synergistic effect between Ni and CoOxspecies, the high BET surface area of the catalyst, and the uniform dispersion of Ni and Co species on the active carbon. The catalyst could be reused for 5 times without loss of activity in a batch reactor. Futhermore, the conversion of HMF to DMF on a fixed-bed reactor was also investigated and the 2%Ni–20%Co/C catalyst exhibited an excellent yield to DMF (>90%) for 71 h time on stream, indicating the high activity and stability of the catalyst. © 2016 Science Press 展开更多
关键词 Batch reactors BIOMASS CATALYSTS Chemical reactors Cobalt compounds Fuel additives HYDROGENOLYSIS HYDROLYSIS NICKEL
下载PDF
Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst 被引量:8
14
作者 Wei Jiang Ying Li +3 位作者 Wenfeng Han Yaping Zhou Haodong Tang Huazhang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期443-452,共10页
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t... A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst. 展开更多
关键词 high surface area graphitic carbon materials (HSGCs) supported Ru catalysts ammonia synthesis graphitic degree ball-roJlling
下载PDF
Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2 被引量:11
15
作者 Shan Cheng Yi-Jing Gao +7 位作者 Yi-Long Yan Xu Gao Shao-Hua Zhang Gui-Lin Zhuang Sheng-Wei Deng Zhong-Zhe Wei Xing Zhong Jian-Guo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期144-151,共8页
To search the new effective nitrogen reduction reaction(NRR)electrocatalyst is very important for the ammonia-based industry.Herein,we reported the design of a novel NRR electrocatalyst with Ru NPs loaded on oxygen-va... To search the new effective nitrogen reduction reaction(NRR)electrocatalyst is very important for the ammonia-based industry.Herein,we reported the design of a novel NRR electrocatalyst with Ru NPs loaded on oxygen-vacancy TiO2(Ru/TiO2-Vo).Structural characterizations revealed that oxygen vacancy was loaded in the matrix of Ru/TiO2-Vo.Electrocatalytic results indicated that Ru/TiO2-Vo showed good NRR performance(2.11μg h^-1 cm^-2).Contrast tests showed that NRR property of Ru/TiO2-Vo was much better than those of Ru/TiO-12(B)(0.53μg hcm^-2)and Ru/P25(0.42μg h^-1 cm^-2).Furthermore,density functional theory calculation results indicated catalytic mechanism of NRR and rate-determining step(*N2+1/2 H2→*N+*NH)was the potential-determining step with the overpotential requirement of 0.21 V.A combination of electronic structure analysis and catalytic measurement shed light on the synergistic effect of Ru and oxygen vacancy on the NRR performance. 展开更多
关键词 Nitrogen reduction reaction ELECTROCATALYSIS Oxygen vacancy DFT
下载PDF
Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane 被引量:8
16
作者 詹望成 卢冠忠 +5 位作者 郭杨龙 郭耘 王艳芹 王筠松 张志刚 刘晓晖 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期515-522,共8页
Cerium-doped MCM-48 molecular sieves were synthesized hydrothermally and characterized by X-ray diffraction, nitrogen adsorption, transmission electron microscope, FT-IR spectroscopy, UV-visible spectroscopy, and Rama... Cerium-doped MCM-48 molecular sieves were synthesized hydrothermally and characterized by X-ray diffraction, nitrogen adsorption, transmission electron microscope, FT-IR spectroscopy, UV-visible spectroscopy, and Raman spectroscopy. The results showed that all the samples held the structure of MCM-48, and Ce could enter the framework of MCM-48. However, when Ce/Si molar ratio in the sampies was high (0.04 or 0.059), there were CeO2 crystallites as secondary phase in the extraframework of MCM-48. Ce-doped MCM-48 was a very efficient catalyst for the oxidation of cyclohexane in a solvent-free system with oxygen as an oxidant. In the conditions of 0.5 MPa 02 and 413 K for 5 h, the conversion of cyclohexane was 8.1% over Ce-MCM-48-0.02, the total selectivity of cyclohexanol and cyclohaxnone was 98.7%. With an increase of Ce content, the conversion of cyclohexane and the selectivity to cyclohexanol decreased somewhat, but the selectivity to cyclohexanone increased. 展开更多
关键词 Ce-doped MCM-48 synthesis CYCLOHEXANE catalytic oxidation rare earths
下载PDF
Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups 被引量:7
17
作者 Xing Chen Lu Yang +5 位作者 Wangcheng Zhan Li Wang Yun Guo Yunsong Wang Guanzhong Lu Yanglong Guo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期47-53,共7页
Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated ... Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated Fe3O4nanoparticles using N,N’‐methylene‐bis(acrylamide)as across‐linking agent.Penicillin G acylase(PGA)was covalently immobilized on the surface of theparamagnetic microspheres by reacting the amino groups of the PGA molecules with the epoxygroups of the paramagnetic polymer microspheres.The effect of the SiO2coating and the amount ofparamagnetic Fe3O4nanoparticles on the initial activity and the operational stability of the immobilizedPGA was investigated.The results indicated that SiO2played an important role in the polymerization process and paramagnetic polymer microspheres with a SiO2‐coated Fe3O4nanoparticles mass content of7.5%are an optimal support material for PGA immobilization.Immobilized PGA on the paramagnetic polymer microspheres shows a high initial activity of430U/g(wet)and retains99%of its initial activity after recycling10times.Furthermore,immobilized PGA exhibits high thermal stability,pH stability and excellent reusability,which can be rapidly recycled by the aid of magnet.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Paramagnetic polymer microspheres Epoxy groups Penicillin G acylase Covalent bonding IMMOBILIZATION
下载PDF
Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports 被引量:6
18
作者 Di Ma Shenglu Lu +2 位作者 Xiaohui Liu Yong Guo Yanqin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第4期609-617,M0006,共10页
Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important.Previously,we found that NbOx species played a key role in the activation and cleavage of C-O... Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important.Previously,we found that NbOx species played a key role in the activation and cleavage of C-O bonds in lignin and its model compounds.In this study,commercial niobic acid(HY-340),niobium phosphate(NbPO-CBMM)and lab-made layered niobium oxide(Nb2O5-Layer)were chosen as supports to study the effect of Brosted and Lewis acids on the activation of C-O bonds in lignin conversion.A variety of Ru-loaded,Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol.The results show that all the Ru/Nb-based catalysts produce high mole yields of C7-C9 hydrocarbons(82.3%-9.1%).What's more,Ru/Nb2O5-Layer affords the best mole yield of C7-C9 hydrocarbons and selectivity for C7-C9 aromatic hydrocarbons,of up to 99.1% and 88.0%,respectively.Moreover,it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C-O bond of phenols.Additionally,the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons.A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons. 展开更多
关键词 LIGNIN Aromatic hydrocarbons Nb-based supports Lewis acid sites Ru
下载PDF
Effect of activated carbon support on CS_2 removal over coupling catalysts 被引量:6
19
作者 Li Wang Yun Guo Guanzhong Lu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期397-402,共6页
Supported coupling catalysts for CS2 removal were prepared with different activated carbons originated from wood,coconut shell and coal as supports,and their catalytic activities for CS2 removal were tested at ambient... Supported coupling catalysts for CS2 removal were prepared with different activated carbons originated from wood,coconut shell and coal as supports,and their catalytic activities for CS2 removal were tested at ambient temperature.The textural and surface properties of the activated carbons were characterized by nitrogen adsorption,temperature-programmed desorption(TPD)and Boehm titration.The activated carbon support with meso-and macropores,and oxygen-functional groups performs higher CS2 removal ability at ambient temperature.The effects of flow rate,CS2 inlet concentration,temperature and relative humidity on CS2 removal were also investigated.High efficient removal is obtained at temperature of 50-C,space velocity of 2000 h-1,inlet CS2 concentration of 500 mgS/m3 and relative humidity of 20%with the breakthrough sulfur capacity up to 4.3 gS/gCat and working sulfur capacity up to 7 gS/gCat. 展开更多
关键词 carbon disulfide coupling removal activated carbon ambient temperature
下载PDF
Preparation of LaMnO_3 for catalytic combustion of vinyl chloride 被引量:9
20
作者 Li Wang Hongkai Xie +4 位作者 Xingdan Wang Guizhen Zhang Yanglong Guo Yun Guo Guanzhong Lu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1406-1412,共7页
LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X... LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X‐ray diffraction(XRD),Raman spectroscopy(Raman),O2temperature programmed desorption(O2‐TPD),H2temperature programmed surface reaction(H2‐TPR)and X‐ray photoelectron spectroscopy(XPS)were used to characterize the physicochemical properties of the LaMnO3samples.The preparation methods had obvious effects on the distribution of oxygen and manganese species on the catalyst surface.The reaction followed the suprafacial mechanism;the activity corresponded with the high amount of Mn4+and adsorbed oxygen species.LaMnO3prepared by the citrate sol‐gel method had the best performance for vinyl chloride combustion with T90of182°C.The optimal activity was attributed to the improved redox capability of Mn4+/Mn3+.More available adsorbed oxygen and Mn4+species on the surface were mainly responsible for the remarkable enhancement of the catalytic activity. 展开更多
关键词 LAMNO3 Vinyl chloride Catalytic combustion Low temperature Preparation method
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部