期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries:Review on the alloying phase and reaction mechanisms
1
作者 Dedy Setiawan Hyeonjun Lee +6 位作者 Jangwook Pyun Amey Nimkar Netanel Shpigel Daniel Sharon Seung-Tae Hong Doron Aurbach Munseok S.Chae 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3476-3490,共15页
Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electro... Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems. 展开更多
关键词 Magnesium-ion battery Anode materials Magnesium alloy Electrochemical alloying
下载PDF
A review on ultra-small undoped MoS_(2) as advanced catalysts for renewable fuel production
2
作者 Guoping Liu Lingling Ding +6 位作者 Yuxuan Meng Ahmad Ali Guifu Zuo Xianguang Meng Kun Chang Oi Lun Li Jinhua Ye 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期92-112,共21页
Molybdenum disulfide(MoS_(2))has garnered significant attention in the field of catalysis due to the high density of active sites in its unique two-dimensional(2D)structure,which could be developed into numerous high-... Molybdenum disulfide(MoS_(2))has garnered significant attention in the field of catalysis due to the high density of active sites in its unique two-dimensional(2D)structure,which could be developed into numerous high-performance catalysts.The synthesis of ultra-small MoS2 particles(<10 nm)is highly desired in various experimental studies.The ultra-small structure could often lead to a distinct S-Mo coordination state and nonstoichiometric composition in MoSx,minimizing in-plane active sites of the 2D structure and making it probable to regulate the atomic and electronic structure of its intrinsic active sites on a large extent,especially in MoSx clusters.This article summarizes the recent progress of catalysis over ultra-small undoped MoS_(2) particles for renewable fuel production.Through a systematic review of their synthesis,structural,and spectral characteristics,as well as the relationship between their catalytic performance and inherent defects,we aim to provide insights into catalysis over this matrix that may potentially enable advancement in the development of high-performance MoS_(2)-based catalysts for sustainable energy generation in the future. 展开更多
关键词 applications CATALYTIC MoS_(2) structure synthesis
下载PDF
Boron Nitride-Integrated Lithium Batteries:Exploring Innovations in Longevity and Performance
3
作者 Shayan Angizi Sayed Ali Ahmad Alem +3 位作者 Mahdi Torabian Maryam Khalaj Dmitri Golberg Amir Pakdel 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期13-40,共28页
The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of... The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research. 展开更多
关键词 ELECTRODE ELECTROLYTE hexagonal boron nitride lithium battery SEPARATOR
下载PDF
Is platinum-loaded titania the best material for dye-sensitized hydrogen evolution under visible light?
4
作者 Haruka Yamamoto Langqiu Xiao +5 位作者 Yugo Miseki Hiroto Ueki Megumi Okazaki Kazuhiro Sayama Thomas E.Mallouk Kazuhiko Maeda 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期124-132,共9页
A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)N... A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)Nb_(3)O_(10) nanosheets.When the sacrificial donor ethylenediaminetetraacetic acid(EDTA)disodium salt dihydrate was used,RuP/Pt/TiO_(2) showed higher activity than RuP/Pt/HCa_(2)Nb_(3)O_(10).In contrast,when NaI(a reversible electron donor)was used,RuP/Pt/TiO_(2) showed little activity due to back electron transfer to the electron acceptor(I_(3)-),which was gener-ated as the oxidation product of I-.By modification with anionic polymers(sodium poly(styrenesulfonate)or sodium polymethacrylate)that could inhibit the scavenging of conduction band electrons by I_(3)-,the H_(2) production activity from aqueous NaI was improved,but it did not exceed that of RuP/Pt/HCa_(2)Nb_(3)O_(10).Transient absorption measurements showed that the rate of semiconductor-to-dye back electron transfer was slower in the case of TiO_(2) than HCa_(2)Nb_(3)O_(10),but the electron transfer reaction to I3-was much faster.These results indicate that Pt/TiO_(2) is useful for reactions with sacrificial reductants(e.g.,EDTA),where the back electron transfer reaction to the more reducible product can be neglected.However,more careful design of the catalyst will be nec-essary when a reversible electron donor is employed. 展开更多
关键词 Artificial photosynthesis Solar fuel Water splitting Z-scheme
下载PDF
Selection of Fe as a barrier for manufacturing low-cost MgB2 multifilament wires-Advanced microscopy study between Fe and B reaction
5
作者 Hao Liang Dipak Patel +7 位作者 Ziming Wang Akiyoshi Matsumoto Matt Rindfleisch Micheal Tomsic Richard Taylor Fang Liu Yusuke Yamauchi Md.Shahriar A Hossain 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2783-2792,共10页
The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niob... The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires. 展开更多
关键词 Superconducting wires MGB2 MRI magnet Engineering critical current density Fe2B
下载PDF
Additive manufacturing of promising heterostructure for biomedical applications 被引量:5
6
作者 Cijun Shuai Desheng Li +2 位作者 Xiong Yao Xia Li Chengde Gao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期363-405,共43页
As a new generation of materials/structures,heterostructure is characterized by heterogeneous zones with dramatically different mechanical,physical or chemical properties.This endows heterostructure with unique interf... As a new generation of materials/structures,heterostructure is characterized by heterogeneous zones with dramatically different mechanical,physical or chemical properties.This endows heterostructure with unique interfaces,robust architectures,and synergistic effects,making it a promising option as advanced biomaterials for the highly variable anatomy and complex functionalities of individual patients.However,the main challenges of developing heterostructure lie in the control of crystal/phase evolution and the distribution/fraction of components and structures.In recent years,additive manufacturing techniques have attracted increasing attention in developing heterostructure due to the unique flexibility in tailored structures and synthetic multimaterials.This review focuses on the additive manufacturing of heterostructure for biomedical applications.The structural features and functional mechanisms of heterostructure are summarized.The typical material systems of heterostructure,mainly including metals,polymers,ceramics,and their composites,are presented.And the resulting synergistic effects on multiple properties are also systematically discussed in terms of mechanical,biocompatible,biodegradable,antibacterial,biosensitive and magnetostrictive properties.Next,this work outlines the research progress of additive manufacturing employed in developing heterostructure from the aspects of advantages,processes,properties,and applications.This review also highlights the prospective utilization of heterostructure in biomedical fields,with particular attention to bioscaffolds,vasculatures,biosensors and biodetections.Finally,future research directions and breakthroughs of heterostructure are prospected with focus on their more prospective applications in infection prevention and drug delivery. 展开更多
关键词 additive manufacturing HETEROSTRUCTURE synergistic effects integrated properties biomedical applications
下载PDF
Tuned d-band states over lanthanum doped nickel oxide for efficient oxygen evolution reaction 被引量:1
7
作者 Ziyi Xiao Wei Zhou +7 位作者 Baopeng Yang Chengan Liao Qing Kang Gen Chen Min Liu Xiaohe Liu Renzhi Ma Ning Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第2期228-236,共9页
The d-band state of materials is an important descriptor for activity of oxygen evolution reaction(OER).For NiO materials,there is rarely concern about tuning their d-band states to tailor the OER behaviors.Herein,NiO... The d-band state of materials is an important descriptor for activity of oxygen evolution reaction(OER).For NiO materials,there is rarely concern about tuning their d-band states to tailor the OER behaviors.Herein,NiO nanocrystals with doping small amount of La^(3+)were used to regulate d-band states for promoting OER activity.Density of states calculations based on density functional theory revealed that La^(3+)doping produced upper shift of d-band center,which would induce stronger electronic interaction between surface Ni atoms and species of oxygen evolution reaction intermediates.Further density functional theory calculation illustrated that La^(3+)doped NiO possessed reduced Gibbs free energy in adsorbing species of OER intermediate.Predicted by theoretical calculations,trace La^(3+)was introduced into crystal lattice of NiO nanoparticles.The La^(3+)doped NiO nanocrystal showed much promoted OER activity than corresponding pristine NiO product.Further electrochemical analysis revealed that La^(3+)doping into NiO increased the intrinsic activity such as improved active sites and reduced charge transfer resistance.The in-situ Raman spectra suggested that NiO phase in La^(3+)doped NiO could be better maintained than pristine NiO during the OER.This work provides an effective strategy to tune the d-band center of NiO for efficient electrocatalytic OER. 展开更多
关键词 Nickel oxide Oxygen evolution reaction D-band center ELECTROCATALYSIS Water splitting
下载PDF
Engineering d-band states of(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material for photocatalytic syngas production
8
作者 Peng Liu Baopeng Yang +7 位作者 Ziyi Xiao Shengyao Wang Shimiao Wu Min Liu Gen Chen Xiaohe Liu Renzhi Ma Ning Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期365-372,共8页
The d-band states of catalytic materials participate in adsorbing reactive intermediate species and determine the catalytic behaviors in CO_(2)reduction reactions.However,surface d-band states relating to the photocat... The d-band states of catalytic materials participate in adsorbing reactive intermediate species and determine the catalytic behaviors in CO_(2)reduction reactions.However,surface d-band states relating to the photocatalytic CO_(2)reduction reactions behaviors are rarely concerned.Herein,a slightly amount of Cd^(2+)is decorated on the surface of(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material(Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4))to tune the surface d-band states for improved CO_(2)+2reduction reactions.The Cd/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)is fabricated via the facile ions-exchange method to make that slightly Zn2+is substituted by Cd^(2+).The Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)exhibits much enhanced photocatalytic activity in CO_(2)reduction reactions to produce CO and water splitting to produce H_(2).Physical characterizations show that the energy band structure is not changed obviously.Density functional theory reveals that Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)possesses a closer shift of d-band center to Fermi level than(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4),suggesting easier adsorption of CO_(2)reduction reactive intermediates after Cd^(2+)decoration.Further calculations confirm that a relatively reduced adsorption Gibbs energy of reactive intermediates in CO_(2)reduction reaction is required on Zn atoms in Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material,benefiting the photocatalytic CO_(2)reduction reactions.This work engineers surface d-band states by surface Cd^(2+)decoration,which gives an effective strategy to design highly efficient photocatalysts for syngas production. 展开更多
关键词 Photocatalysisd-band state Density functional theory Sulfide semiconductor Surface modification
下载PDF
Cobalt phthalocyanine-based conjugated polymer as efficient and exclusive electrocatalyst for CO_(2) reduction to ethanol
9
作者 Dong Jiang Ran Bu +6 位作者 Wei Xia Yichen Hu Mengchen Zhou Enqing Gao Toru Asahi Yusuke Yamauchi Jing Tang 《Materials Reports(Energy)》 2023年第1期100-106,I0004,共8页
Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been ... Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction.In the present contribution,we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer,named CoPPc-TFPPy-CP,and also explored its electro-catalytic application in carbon dioxide reduction to liquid products in an aqueous solution.In the catalyst,cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages,leading to mesoporous formation polymers with the pore size centered at 4.1nm.And the central co-balt atoms shifted to a higher oxidation state after condensation.With these chemical and structural natures,the catalyst displayed a remarkable electrocatalytic CO_(2) reduction performance with an ethanol Faradaic efficiency of 43.25%at-1.0V vs RHE.While at the same time,the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen.To the best of our knowledge,CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO_(2) with a remarkable selectivity. 展开更多
关键词 Cobalt phthalocyanine based conjugated polymer Carbon dioxide electroreduction Liquid products ETHANOL
下载PDF
外加物理场调控二维材料的HER和OER性能 被引量:2
10
作者 秦春玲 陈爽 +8 位作者 Hassanien Gomaa Mohamed A.Shenashen Sherif A.El-Safty 刘倩 安翠华 刘熙俊 邓齐波 胡宁 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第9期28-34,共7页
长期以来,氢燃料一直被认为是一种有前途和可行的传统化石燃料的替代品,可以支撑我们未来的能源格局。电催化水分解是一种可用于大规模高效生产高纯度氢气的可持续和环保的技术。该技术的工业化需要我们不断地提高两个电极上的析氢反应(... 长期以来,氢燃料一直被认为是一种有前途和可行的传统化石燃料的替代品,可以支撑我们未来的能源格局。电催化水分解是一种可用于大规模高效生产高纯度氢气的可持续和环保的技术。该技术的工业化需要我们不断地提高两个电极上的析氢反应(HER)和析氧反应(OER)的反应动力学。此外,催化剂催化活性和结构稳定性的持续优化对于该技术的实际实施同样关键。因此,合适的催化剂的选取是影响电催化水分解的关键因素之一。二维(2D)纳米材料由于其独特的物理化学性质和丰富的活性位点成为了电解水领域的热点。此外,2D材料独特的物理化学特性能与外加物理场之间高度契合,可以产生一些独特的效果来增强电催化性能。因此,近些年,外加物理场在辅助改善HER和OER方面的作用和机制越来越受到关注。外加物理场,如电场,磁场,应变,光,温度和超声波,可以应用于催化剂合成和电催化过程。本文首先总结了物理场辅助电解水催化剂合成的研究。随后,根据外场在电催化过程中作用机制的不同,对外场辅助HER和OER的研究进行了分类。最后,本文指出了本领域快速发展所面临的主要挑战和前景。 展开更多
关键词 外加物理场 析氢反应 析氧反应 合成 二维材料
下载PDF
Superconducting joints using reacted multifilament MgB_(2)wires:A technology toward cryogen-free MRI magnets
11
作者 Dipak Patel Akiyoshi Matsumoto +8 位作者 Hiroaki Kumakura Yuka Hara Toru Hara Minoru Maeda Hao Liang Yusuke Yamauchi Seyong Choi Jung Ho Kim Md Shahriar A.Hossain 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期159-170,共12页
The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance ima... The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance imaging(MRI).Herein,the fabrication of superconducting joints using reacted carbon-doped multifilament MgB_(2)wires for MRI magnets is reported.To achieve successful superconducting joints,the powder-in-mold method was employed,which involved tuning the filament protection mechanism,the powder compaction pressure,and the heat treatment condition.The fabricated joints demonstrated clear superconducting-to-normal transitions in self-field,with effective magnetic field screening up to 0.5 T at 20 K.To evaluate the interface between one of the MgB_(2)filaments and the MgB_(2)bulk within the joint,serial sectioning was conducted for the first time in this type of superconducting joint.The serial sectioning revealed space formation at the interface,potentially caused by the volume shrinkage associated with the MgB_(2)formation or the combined effect of the volume shrinkage and the different thermal expansion coefficients of the MgB_(2)bulk,the filament,the mold,and the sealing material.These findings are expected to be pivotal in developing MgB_(2)superconducting joining technology for MRI magnet applications through interface engineering. 展开更多
关键词 Mg B2 superconducting joint MgB_(2)conductor MRI applications Cryogen-free magnet Persistent-mode operation
下载PDF
Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools
12
作者 Manpreet Kaur Avinash Alagumalai +3 位作者 Omid Mahian Sameh M.Osman Tadaaki Nagao Zhonglin Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期332-341,共10页
Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,... Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat. 展开更多
关键词 ceramic microfibers energy harvesting power generation self-powered systems water evaporation
下载PDF
Lithium Ion Transport Environment by Molecular Vibrations in Ion-Conducting Glasses
13
作者 Hiroki Yamada Koji Ohara +20 位作者 Satoshi Hiroi Atsushi Sakuda Kazutaka lkeda Takahiro Ohkubo Kengo Nakada Hirofumi Tsukasaki Hiroshi Nakajimai Laszlo Temleitner Laszlo Pusztai Shunsuke Ariga Aoto Matsuo Jiong Ding Takumi Nakano Takuya Kimura Ryo Kobayashi Takeshi Usuki Shuta Tahara Koji Amezawa Yoshitaka Tateyama Shigeo Mori Akitoshi Hayashi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期133-142,共10页
Controlling Li ion transport in glasses at atomic and molecular levels is key to realizing all-solid-state batteries,a promising technology for electric vehicles.In this context,Li_(3)PS_(4)glass,a promising solid ele... Controlling Li ion transport in glasses at atomic and molecular levels is key to realizing all-solid-state batteries,a promising technology for electric vehicles.In this context,Li_(3)PS_(4)glass,a promising solid electrolyte candidate,exhibits dynamic coupling between the Li^(+)cation mobility and the PS_(4)^(3-)anion libration,which is commonly referred to as the paddlewheel effect.In addition,it exhibits a concerted cation diffusion effect(i.e.,a cation-cation interaction),which is regarded as the essence of high Li ion transport.However,the correlation between the Li^(+)ions within the glass structure can only be vaguely determined,due to the limited experimental information that can be obtained.Here,this study reports that the Li ions present in glasses can be classified by evaluating their valence oscillations via Bader analysis to topologically analyze the chemical bonds.It is found that three types of Li ions are present in Li_(3)PS_(4)glass,and that the more mobile Li ions(i.e.,the Li3-type ions)exhibit a characteristic correlation at relatively long distances of 4.0-5.0A.Furthermore,reverse Monte Carlo simulations combined with deep learning potentials that reproduce X-ray,neutron,and electron diffraction pair distribution functions showed an increase in the number of Li3-type ions for partially crystallized glass structures with improved Li ion transport properties.Our results show order within the disorder of the Li ion distribution in the glass by a topological analysis of their valences.Thus,considering the molecular vibrations in the glass during the evaluation of the Li ion valences is expected to lead to the development of new solid electrolytes. 展开更多
关键词 electrolytes ionic conductors MODELING molecular dynamics
下载PDF
Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation 被引量:6
14
作者 Zhicheng Zheng Dan Wu +4 位作者 Gen Chen Ning Zhang Hao Wan Xiaohe Liu Renzhi Ma 《Carbon Energy》 SCIE CAS 2022年第5期901-913,共13页
The lattice-oxygen-mediated mechanism is considered as a reasonable mechanism for the electrochemical catalytic oxygen evolution reaction(OER)of NiFe layered double hydroxides(LDHs).A NiFe LDH with distinct lattice co... The lattice-oxygen-mediated mechanism is considered as a reasonable mechanism for the electrochemical catalytic oxygen evolution reaction(OER)of NiFe layered double hydroxides(LDHs).A NiFe LDH with distinct lattice contraction and microcrystallization was synthesized via a simple one-step method using sodium gluconate.The lattice contraction is attributed to the interaction of carbon in sodium gluconate and iron in NiFe LDH.The NiFe LDH with optimized microcrystallization and lattice contraction shows a low overpotential of 217 mV at a current density of 10 mA cm^(−2) and excellent durability of 20 h at a high current density of 100 mA cm^(−2).The results revealed that a contractive metal–oxygen bond could boost the intrinsic activity of active sites and the microcrystallization promotes an increase in the number of active sites in terms of unit area.The chemical environment of oxygen elemental characterization and resistance at different chronopotentiometry times confirm that the lattice oxygen element is indeed involved in the process of OER,supporting the lattice-oxygen-mediated mechanism of NiFe LDH.Density functional theory calculations reveal that contractive metal–oxygen bonds induced a reduction of the adsorption energy barrier of intermediate products,thus improving the intrinsic catalytic activity.The special characteristics of microcrystallization and lattice contraction of NiFe LDH provide a strategy to improve both the number and the intrinsic activity of active sites in a versatile manner. 展开更多
关键词 lattice contraction lattice-oxygen-mediated mechanism microcrystallization NiFe LDH oxygen evolution reaction
下载PDF
Synthesis of graphene/tourmaline/TiO_2 composites with enhanced activity for photocatalytic degradation of 2-propanol 被引量:6
15
作者 Lili Yin Ming Zhao +2 位作者 Huilin Hu Jinhua Ye Defa Wang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1307-1314,共8页
We report the construction of a graphene/tourmaline/TiO2(G/T/TiO2)composite system with enhanced charge‐carrier separation,and therefore enhanced photocatalytic properties,based on tailoring the surface‐charged stat... We report the construction of a graphene/tourmaline/TiO2(G/T/TiO2)composite system with enhanced charge‐carrier separation,and therefore enhanced photocatalytic properties,based on tailoring the surface‐charged state of graphene and/or by introducing an external electric field arising from tourmaline.A simple two‐step hydrothermal method was used to synthesize G/T/TiO2composites and poly(diallyldimethylammonium chloride)‐G/T/TiO2composites.In the photocatalytic degradation of2‐propanol(IPA),the catalytic activity of the composite containing negatively charged graphene was higher than of the composite containing positively charged graphene.The highest acetone evolution rate(223?mol/h)was achieved using the ternary composite with the optimum composition,i.e.,G0.5/T5/TiO2(0.5wt%graphene and5wt%tourmaline).The involvement of tourmaline and graphene in the composite is believed to facilitate the separation and transportation of electrons and holes photogenerated in TiO2.This synergetic effect could account for the enhanced photocatalytic activity of the G/T/TiO2composite.A mechanistic study indicated that O2??radicals and holes were the main reactive oxygen species in photocatalytic degradation of IPA. 展开更多
关键词 PHOTOCATALYSIS GRAPHENE TOURMALINE TiO2 Composite 2‐Propanol DEGRADATION
下载PDF
Theoretical and Experimental Sets of Choice Anode/Cathode Architectonics for High-Performance Full-Scale LIB Built-up Models 被引量:3
16
作者 H.Khalifa S.A.El-Safty +4 位作者 A.Reda M.A.Shenashen M.M.Selim A.Elmarakbi H.A.Metawa 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期485-507,共23页
To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulate... To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models.As primary structural tectonics,heterogeneous composite superstructures of full-cell-LIB(anode//cathode)electrodes were designed in closely packed flower agave rosettes TiO2@C(FRTO@C anode)and vertical-star-tower LiFePO4@C(VST@C cathode)building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways.The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements,in-to-out interplay electron dominances,and electron/charge cloud distributions.This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities.Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models.The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity(~94.2%),an average Coulombic efficiency of 99.85%after 2000 cycles at 1 C,and a high energy density of 127 Wh kg?1,thereby satisfying scale-up commercial EV requirements. 展开更多
关键词 LITHIUM-ION battery 3D super-scalable hierarchal anode/cathode MODELS Density functional theory Anode/cathode architectonics Electric vehicle applications
下载PDF
Photo-thermal CO_(2) reduction with methane on group Ⅷ metals:In situ reduced WO_(3) support for enhanced catalytic activity 被引量:3
17
作者 Huimin Liu Xianguang Meng +3 位作者 Weiwei Yang Guixia Zhao Dehua He Jinhua Ye 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第11期1976-1982,共7页
Photo-thermal CO_(2) reduction with methane(CRM)is beneficial for solar energy harvesting and energy storage.The search for efficient photo-thermal catalysts is of great significance.Here,we reveal that group Ⅷ metal... Photo-thermal CO_(2) reduction with methane(CRM)is beneficial for solar energy harvesting and energy storage.The search for efficient photo-thermal catalysts is of great significance.Here,we reveal that group Ⅷ metal catalysts supported by optical material WO_(3) are more effective for photo-thermal CRM,giving catalytic activities with visible light assistance that are 1.4-2.4 times higher than that achieved under thermal conditions.The activity enhancement(1.4-2.4 times)was comparable to that achieved with plasmonic-Au-promoted catalysts(1.7 times).Characterization results indicated that WO_(3) was partially reduced to WO_(3-x) in situ under the reductive CRM reaction atmosphere,and that WO_(3-x) rather than WO_(3) enhanced the activities with visible light assistance.Our method provides a promising approach for improving the activity of catalysts under light irradiation. 展开更多
关键词 Tungsten oxide Visible light In situ reduction PHOTOCATALYSIS CO_(2) reduction
下载PDF
Advanced silicon nanostructures derived from natural silicate minerals for energy storage and conversion 被引量:4
18
作者 Hao Wan Wei Ma +3 位作者 Kechao Zhou Yijun Cao Xiaohe Liu Renzhi Ma 《Green Energy & Environment》 SCIE EI CSCD 2022年第2期205-220,共16页
To effectively alleviate the ever-increasing energy crisis and environmental issues,clean and sustainable energy-related materials as well as the corresponding storage/conversion devices are in urgent demand.Silicon(S... To effectively alleviate the ever-increasing energy crisis and environmental issues,clean and sustainable energy-related materials as well as the corresponding storage/conversion devices are in urgent demand.Silicon(Si) with the second most elemental abundance on the crust in the form of silicate or silica(SiO_(2)) minerals,is an advanced emerging material showing high performance in energy-related fields(e.g.batteries,photocatalytic hydrogen evolution).For the improved performance in industry-scale applications,Si materials with delicate nanostructures and ideal compositions in a massive production are highly cherished.On account of the reserve,low cost and diverse micro-nanostructures,silicate minerals are proposed as promising raw materials.In the article,crystal structures and the reduction approaches for silicate minerals,as well as recent progress on the as-reduced Si products for clean energy storage/conversion,are presented systematically.Moreover,some cutting-edge fields involving Si materials are discussed,which may offer deep insights into the rational design of advanced Si nanostructures for extended energy-related fields. 展开更多
关键词 MINERALS MASSIVE SILICATE
下载PDF
Atomic-level insights into surface engineering of semiconductors for photocatalytic CO_(2) reduction 被引量:3
19
作者 Hengming Huang Hui Song +2 位作者 Jiahui Kou Chunhua Lu Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期309-341,共33页
Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2... Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2)RR)is still challenging owing to the sluggish kinetics or unfavorable thermodynamics for basic chemical processes of CO_(2)RR,such as adsorption,activation,conversion and product desorption.To overcome these shortcomings,recent works have demonstrated that surface engineering of semiconductors,such as introducing surface vacancy,surface doping,and cocatalyst loading,serves as effective or promising strategies for improved photocatalytic CO_(2)RR with high activity and selectivity.The essential reason lies in the activation and reaction pathways can be optimized and regulated through the reconstruction of surface atomic and electronic structures.Herein,in this review,we focus on recent research advances about rational design of semiconductor surface for photocatalytic CO_(2)RR.The surface engineering strategies for improved CO_(2)adsorption,activation,and product selectivity will be reviewed.In addition,theoretical calculations along with in situ characterization techniques will be in the spotlight to clarify the kinetics and thermodynamics of the reaction process.The aim of this review is to provide deep understanding and rational guidance on the design of semiconductors for photocatalytic CO_(2)RR. 展开更多
关键词 CO_(2)reduction PHOTOCATALYSIS Surface engineering Activation SELECTIVITY
下载PDF
Photovoltaic-powered supercapacitors for driving overall water splitting:A dual-modulated 3D architecture 被引量:3
20
作者 Zixu Sun Lijuan Sun +7 位作者 See Wee Koh Junyu Ge Jipeng Fei Mengqi Yao Wei Hong Shude Liu Yusuke Yamauchi Hong Li 《Carbon Energy》 SCIE CAS 2022年第6期1262-1273,共12页
Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven ... Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven water splitting is limited by inefficient connections between functional modules,lack of highly active and stable electrocatalysts,and intermittent and unpredictable renewable energy supply.Herein,we construct a dualmodulated three-dimensional(3D)NiCo_(2)O_(4)@NiCo_(2)S_(4)(denoted as NCONCS)heterostructure deposited on nickel foam as a multifunctional electrode for electrocatalytic water splitting driven by photovoltaic-powered supercapacitors.Due to a stable 3D architecture configuration,abundant active sites,efficient charge transfer,and tuned interface properties,the NCONCS delivers a high specific capacity and rate performance for supercapacitors.A twoelectrode electrolyzer assembled with the NCONCS as both the anode and the cathode only requires a low cell voltage of 1.47 V to achieve a current density of 10 mA cm^(−2) in alkaline electrolyte,which outperforms the state-of-the-art bifunctional electrocatalysts.Theoretical calculations suggest that the generated heterointerfaces in NCONCS improve the surface binding capability of reaction intermediates while regulating the local electronic structures,which thus accelerates the reaction kinetics of water electrolysis.As a proof of concept,an integrated configuration comprising a two-electrode electrolyzer driven by two series-connected supercapacitors charged by a solar cell delivers a high product yield with superior durability. 展开更多
关键词 hybrid energy systems interface engineering morphology control solar-to-hydrogen trifunctional electrode
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部